Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Lab-on-a-Chip Technology Breaks New Bioparticle Separation Record

By LabMedica International staff writers
Posted on 23 Aug 2016
Scientists have developed a new lab-on-a-chip technology that can, for the first time, separate biological particles at the nanoscale down to 20 nanometers in diameter, a scale that gives access to important particles such as DNA, viruses, and exosomes. The breakthrough could enable detection of various diseases before symptoms appear and would facilitate use of relatively noninvasive liquid biopsies.

The device was developed by a team led by scientists from IBM Thomas J Watson Research Center (Yorktown Heights, NY, USA). Once separated, these particles can be analyzed to potentially reveal signs of disease even before patients experience physical symptoms and when the outcome from treatment is most positive. Until now, the smallest bioparticle that could be separated by size with on-chip technologies was about 50 times or larger, for example, separation of circulating tumor cells from other biological components. The study results also showed that separation can take place despite diffusion, a hallmark of particle dynamics at these small scales.

IBM Research partnered with the Icahn School of Medicine at Mount Sinai (NY, USA) to develop exosome-based liquid biopsies using IBM’s nano technology, and will continue the collaboration to further develop this lab-on-a-chip and to test it on prostate cancer.

In precision medicine, exosomes are increasingly being viewed as valuable biomarkers to help reveal the origin and nature of a cancer and for diagnosis and prognosis of malignant tumors. Exosomes are released in easily accessible bodily fluids such as blood, saliva, or urine. The IBM team targeted exosomes with their lab-on-chip technology due to the challenges facing existing techniques for separating and purifying exosomes in liquid biopsies. Exosomes range in size from 20-14 nm and contain information about the health of the originating cell that they are shed from. A determination of the size, surface proteins, and nucleic acid cargo carried by exosomes can give essential information about the presence and state of developing cancer and other diseases. With Mount Sinai, IBM hopes to confirm their technology can pick up exosomes with cancer-specific biomarkers from patient liquid biopsies.

“The ability to sort and enrich biomarkers at the nanoscale in chip-based technologies opens the door to understanding diseases such as cancer as well as viruses like the flu or Zika,” said Gustavo Stolovitzky, program director, Translational Systems Biology and Nanobiotechnology, IBM Research.

With the ability to sort bioparticles at the nanoscale, Mount Sinai hopes that IBM’s technology can provide a new method to eavesdrop on cell-to-cell messages carried by exosomes, to monitor this intercellular conversation. “When we are ahead of the disease we usually can address it well; but if the disease is ahead of us, the journey is usually much more difficult. One of the important developments that we are attempting in this collaboration is to have the basic grounds to identify exosome signatures that can be there very early on before symptoms appear or before a disease becomes worse,” said Carlos Cordon-Cardo, MD, PhD, Mount Sinai Health System, and Icahn School of Medicine, “By bringing together Mount Sinai’s domain expertise in cancer and pathology with IBM’s systems biology experience and its latest nanoscale separation technology, the hope is to look for specific, sensitive biomarkers in exosomes.”

Using a technology called nanoscale deterministic lateral displacement, or nano-DLD, IBM scientists Joshua Smith and Benjamin Wunsch led development of a lab-on-a-chip technology that allows a liquid sample to be passed, in continuous flow, through a silicon chip containing an asymmetric pillar array. This array allows the system to sort a microscopic waterfall of nanoparticles, separating particles by size down to resolution of 10s of nanometers. IBM has already scaled down the chip size to 2cm by 2cm, while continuing development to increase the technology density to improve functionality and throughput. Leveraging IBM’s vast semiconductor expertise with its growing capabilities in experimental biology, the scientists used manufacturable silicon processes to produce the nano-DLD arrays for their lab-on-a-chip technology.

Much like how a road through a small tunnel only allows smaller cars to pass while forcing bigger trucks to detour around, nano-DLD uses a set of pillars to deflect larger particles while allowing smaller particles to flow through the gaps of the pillar array unabated, effectively separating this particle traffic by size while not disrupting flow. The scientists noticed that nano-DLD arrays can also split a mixture of many different particle sizes into a spread of streams, somewhat like a prism splits white light into different colors. The continuous flow nature of this technology circumvents stop-and-go batch processing typical of conventional separation techniques.

The study, by Wunsch BH et al, was published online August 1, 2016, in the journal Nature Nanotechnology.

Related Links:
IBM Thomas J Watson Research Center


New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Dengue Virus Test
LINEAR Dengue-CHIK
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.