We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




First Blood-Based Biomarkers Test to Predict Treatment Response in Cancer Patients

By LabMedica International staff writers
Posted on 30 May 2023
Print article
Image: Newly observed anti-FSP antibodies have also been found to predict immune-related adverse events (Photo courtesy of Calviri)
Image: Newly observed anti-FSP antibodies have also been found to predict immune-related adverse events (Photo courtesy of Calviri)

Every year worldwide, lung cancer afflicts over two million individuals and almost the same number of people succumb to the disease. This malignancy leads the charts in cancer-related mortalities, with the United States witnessing more deaths from lung cancer than from colon, prostate, and breast cancers combined. Although immune checkpoint inhibitors (ICIs) are commonly used in the treatment of lung cancer, their effectiveness is compromised by low response rates, high costs, and the risk of therapy-induced side effects.

Scientists at Calviri, Inc. (Phoenix, AZ, USA) studying the efficacy of ICI therapies in patients with advanced lung cancer have discovered that anti-frameshift peptide antibodies (anti-FSP antibodies), a new category of blood-based biomarkers, have the potential to be developed into improved or new orthogonal tests for predicting tumor responses to treatment. Interestingly, these antibodies could also be instrumental in predicting immune-related adverse events (irAEs) in patients with lung cancer. As part of their investigation, the scientists evaluated serum samples taken from 74 advanced lung cancer patients prior to their treatment with anti-PD-L1 or anti-PD-1 immunotherapy, with or without concurrent chemotherapy. The presence of antibodies recognizing FSPs was detected on peptide microchips. These biomarkers successfully predicted post-treatment tumor responses and adverse events with a remarkable 90-100% accuracy, using a single test.

Despite its small scale, this study signifies the first significant step towards reliably predicting immunotherapy outcomes, potentially leading to improved patient outcomes. Simple, accurate tests to forecast therapy outcomes could empower doctors to suggest treatments for patients who are most likely to benefit, including those with cancers typically resistant to ICIs. Such a predictive test would also enable the identification of patients requiring close monitoring for potential toxicities, allowing therapy doses to be adjusted or paused if necessary. It might also affect the decision to combine chemotherapy with primary ICI therapy for certain patients, as chemotherapy does not always provide additional benefits over ICIs. Predicting whether it is needed could alter treatment recommendations. Furthermore, the implications of this research extend beyond lung cancer, suggesting that for other cancers like brain cancer—where ICIs have traditionally shown low response rates—a screening test for responsive patients could be a lifesaver.

"In previous studies, other biomarkers have shown some encouraging results for predicting ICI therapy tumor responses. However, extraction and testing are elaborate, often unreliable, and sometimes not possible, and there is no test for predicting adverse events," said Kathryn Sykes, the Vice President of Research and Product Development at Calviri. "Our study explores anti-FSP antibodies as novel biomarkers, which can be simply and accurately measured from a small amount of blood."

"We expect these results will justify the approach and facilitate access to the required larger serum sample cohorts for developing and licensing predictive diagnostics based on this technology," said Stephen Albert Johnston, CEO of Calviri. "Future efforts will focus on improving this approach for addressing specific needs in lung cancer treatment and for evaluating this ICI predictive test platform for other research."

Related Links:
Calviri, Inc. 

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Hemoglobin Testing System
VARIANTnbs

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.