We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

T-Cells with CD20 Protein Marker May Drive Early Multiple Sclerosis

By LabMedica International staff writers
Posted on 03 Nov 2021
Print article
Image: Histopathology of Multiple Sclerosis showing demyelination; decoloration in the area of the lesion can be observed using Klüver-Barrera myelin staining (Photo courtesy of Marvin 101)
Image: Histopathology of Multiple Sclerosis showing demyelination; decoloration in the area of the lesion can be observed using Klüver-Barrera myelin staining (Photo courtesy of Marvin 101)
Multiple sclerosis (MS) is a condition that can affect the brain and spinal cord, causing a wide range of potential symptoms, including problems with vision, arm or leg movement, sensation or balance. It's a lifelong condition that can sometimes cause serious disability, although it can occasionally be mild.

While the cause of MS is unclear, the underlying mechanism is thought to be either destruction by the immune system or failure of the myelin-producing cells. Proposed causes for this include genetics and environmental factors, such as viral infections. MS is usually diagnosed based on the presenting signs and symptoms and the results of supporting medical tests.

A team of scientists led by the University of Pennsylvania (Philadelphia, PA, USA) conducted detailed analyses of the immune cells found in the blood of MS patients before and after starting on ocrelizumab for the first time. The cells of two patient groups were analyzed: a set of 23 individuals with either relapsing-remitting (RRMS) or primary progressive disease PPMS who had not received prior therapy, and another group of 35 patients with RRMS. Phenotypic and functional immune profiles were comprehensively assessed by multi-parametric flow cytometry in high-quality cryopreserved peripheral blood mononuclear cells (PBMC).

The investigators reported that the results from both sets of patients were generally similar, with the anti-CD20 therapy leading to a sharp decrease in numbers of B-cells, as expected. The treatment also had marked effects on T-cells, of which there are two main types. One, known as CD8+ T-cells, is a type of cell that is able to kill other cells, for example, cancer cells or cells infected with a virus. By contrast, CD4+ T-cells, the other type, mainly act by helping to coordinate the activity of other components of the immune system, including B-cells. By analyzing specific markers on and in the cells, the team deduced that both the CD4+ and the CD8+ T-cells removed by anti-CD20 therapies were generally pro-inflammatory.

Furthermore, the removed cells showed evidence of being able to get into the central nervous system or CNS, comprised of the brain and spinal cord. The body has several systems in place that normally tightly control which immune cells are able to get into the CNS. Additional analyses showed that most CD8+ T-cells that were removed by ocrelizumab treatment expressed CD20; in other words, it’s likely that the treatment was directly killing these cells. By contrast, CD4+ depletion was not fully explained by the direct effects of targeting CD20.

The authors concluded that their study provided novel insights into both the mode of action of anti-CD20 and mechanisms underlying MS relapse biology. They distinguished the impact of anti-CD20 on CD8+ T cells (largely direct removal of CD20-expressing cells), versus the impact of anti-CD20 on CD4+ T cells (a combination of direct removal, and indirect effects, presumably through depletion of B cells resulting in their diminished in vivo interactions with the CD4+ T cells). The strong inverse correlation with disease activity suggests that CD20-expressing CD8+ T cells leaving the circulation (possibly to the CNS) participate in early encephalitogenic events involved in MS relapse development. The study was presented at the Virtual 37th Congress of the European Committee for Treatment and Research in Multiple Sclerosis held October 13-15, 2021 (ECTRIMS).

Related Links:
University of Pennsylvania

Gold Supplier
Nucleic Acid Extraction System
Lateral Flow Test Cassette Reader
Quantum Blue III
Pancreatic Elastase ELISA Kit
Pancreatic Elastase ELISA
Clinical Chemistry Reagents
SEKURE Clinical Chemistry Reagents

Print article


Molecular Diagnostics

view channel
Image: Absence of nuclear immunohistochemical staining of MSH2 protein (A) and presence of MLH1 protein (B) in urothelial cell carcinoma of the urinary bladder of a patient carrying a germline MSH2 mutation. Observe the nuclear staining in stromal cells as an internal control (Photo courtesy of Radboud University Nijmegen Medical Centre)

Simple Urine Test Detects Urothelial Cancers in Lynch Syndrome Patients

Lynch Syndrome (LS) is an inherited genetic disorder that carries a high risk of cancer. LS is caused by mutations affecting MLH1, MSH2, MSH6 or PMS2 genes. More than one in 300 people have LS but most... Read more


view channel
Image: The Gazelle Hb Variant Test for screening, diagnosis and management of sickle cell disease and related hemoglobinopathies at the point of care (Photo courtesy of Hemex Health)

Point-of-Care Device Accurately Rapidly Diagnoses Sickle Cell Disease

Hemoglobinopathies are the most common autosomal hereditary disorders. Approximately 7% of the global population carries hemoglobin gene mutation including structural hemoglobin variants like sickle hemoglobin... Read more


view channel
Image: The sciREADER CL2 enables high quality digital colorimetric imaging of various support formats (Photo courtesy of SCIENION)

Multiplex Immunoassay Developed for Confirmation and Typing of HTLV Infections

Human T-Cell Lymphotropic Viruses (HTLV) type 1 and type 2 account for an estimated five to 10 million infections worldwide and are transmitted through breast feeding, sexual contacts and contaminated... Read more


view channel

AI Accurately Detects and Diagnoses Colorectal Cancer from Tissue Scans As Well or Better Than Pathologists

Artificial intelligence (A) can accurately detect and diagnose colorectal cancer from tissue scans as well or better than pathologists, according to a new study. The study, which was conducted by researchers... Read more


view channel
Image: PKeye Workflow Monitor System (Photo courtesy of PerkinElmer, Inc.)

PerkinElmer’s New Cloud-Based Platform Enables Laboratory Personnel to Remotely Manage Its Instruments in Real-Time

PerkinElmer, Inc. (Waltham, MA; USA) has launched its PKeye Workflow Monitor, a cloud-based platform enabling laboratory personnel to remotely manage and monitor their PerkinElmer instruments and workflows... Read more


view channel

Global Point of Care Diagnostics Market to Top USD 35 Billion by 2027 Due to Rising Diabetic Cases

The global point of care diagnostics market is projected to grow at a CAGR of close to 6% from more than USD 23 billion in 2020 to over USD 35 billion by 2027, driven by an increase in the number of diabetic... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.