We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

New Flow Control Technology Turns Simple COVID-19 Dipstick Tests into Complex Biomedical Assays

By LabMedica International staff writers
Posted on 19 Oct 2021
Print article
Image: Fully assembled liquid flow assay developed in the Sarioglu lab (Photo courtesy of Allison Carter)
Image: Fully assembled liquid flow assay developed in the Sarioglu lab (Photo courtesy of Allison Carter)

A team of researchers attempting to overcome the limitations of dipsticks have developed a flow control technology that can turn these simple tests into complex biomedical assays.

The researchers at the Georgia Institute of Technology (Atlanta, GA, USA) have applied the new technology in a toolkit to diagnose the novel coronavirus, as well as influenza. Lateral flow assays - LFAs, often called ‘dipsticks’ - have been a standard point-of-care testing platform for decades, and keep growing in popularity, especially in developing countries. These disposable, paper-based diagnostic devices are affordable, widely available, have a long shelf life, and they’re fast, typically delivering test results in less than 20 minutes. They’re also easy to use at home. The user adds a few drops of a sample - saliva, blood, or urine, for instance - to one end of the dipstick, and within minutes reads the results at the other end.

The technology has been widely used to determine the presence or absence of biomarkers in humans, as well as contaminants in water or food. Most commonly, LFA technology is used for at-home pregnancy tests. And more recently, LFA technology has been used successfully in at-home tests for COVID-19. Recognizing the widespread popularity and practicality of dipsticks, particularly in resource-limited settings, the research team are overcoming those limitations with development of a flow control technology, turning these simple tests into complex biomedical assays.

LFAs utilize capillary liquid flow to detect analytes - capillary flow is the process of liquid passing through a narrow passageway (like a capillary); analytes are substances or chemicals of interest, such as an antibodies or proteins, in an analytical procedure (like an LFA). According to the researchers, conventional LFAs are not practical for performing multi-step assays - capillary flow prevents them from coordinating a complex process that includes the application of multiple reagents in a specific sequence with specific delays in between. In their recently published studies, the team describes a technique to control capillary flow by imprinting roadblocks on a laminated paper with water insoluble ink. The blocked liquid flow is thus manipulated into a void formed at the interface of the ink-infused paper and the polymer tape laminate. By modifying the roadblocks, the researchers can essentially set the time it takes for a void to form - creating timers that hold capillary flow for a desired period.

For the user, the new dipstick test works the same way as the reliable standard - a sample is added at one end and the results present themselves minutes later in living color(s) at the other end. The researchers have simply enhanced and expanded the process in between. Basically, they drew patterns on paper - a dipstick - and created immunoassays that rival other diagnostic tests requiring labs and extra equipment, in the effective detection of pathogenic targets like Zika virus, HIV, hepatitis B virus, or malaria, among others.

The researchers also tested a PCR-based point-of-care toolkit based on the lab’s flow technology. The assay is programmed to run a sequence of chemical reactions to detect SARS-CoV-2 (severe respiratory syndrome-coronavirus 2) and/or influenza A and influenza B. A traditionally labor-intensive genetic assay can now be done on a disposable platform which will enable frequent, on-demand self-testing, thereby filling a critical need to track and contain outbreaks. The team is studying the technology’s application for other assays targeting other pathogens, with plans to publish in the coming months. The researchers are optimistic that the work will have implications in the current healthcare challenge with COVID-19, and beyond.

“We believe this flow technology research will have widespread impact,” said engineering researcher Fatih Sarioglu, who runs the Biomedical Microsystems Laboratory at the Georgia Institute of Technology. “This kind of dipstick test is so commonly used by the public for biomedical testing, and now it can be translated into other applications that we do not traditionally consider to be cut out for these simple tests.”

Related Links:
Georgia Institute of Technology 

Gold Supplier
Benchtop Auto Sample Transfer Processor
MGISTP-3000
New
Gold Supplier
Desktop Urine Analyzer
MONOZYME TX2000
New
Molecular Diagnostic Platform
VERIGENE II System
New
Gold Supplier
Centrifuge
Multifuge X4 Pro Centrifuge Series

Print article

Channels

Hematology

view channel
Image: Atellica Solution (Photo courtesy of Siemens Healthineers)

Siemens Introduces New Intelligent, Integrated IVD Solutions Virtually at EUROMEDLAB 2021

Siemens Healthineers (Erlangen, Germany) introduced new intelligent, integrated IVD solutions virtually at the XXIV IFCCEFLM European Congress of Clinical Chemistry and Laboratory Medicine (EuroMedLab... Read more

Immunology

view channel
Image: The Luminex 200 Instrument System sets the standard for multiplexing, providing the ability to perform up to 100 different tests in a single reaction volume on a flow cytometry-based platform (Photo courtesy of Luminex Corp)

Inflammatory Cytokines Measured in Infants Born to Preterm Preeclamptic Mothers

Preeclampsia is both a vascular and inflammatory disorder. The pathophysiology of preeclampsia is complex and rooted in the interplay between maternal and placental factors with the key characteristics... Read more

Microbiology

view channel
Image: The sciREADER CL2 enables high quality digital colorimetric imaging of various support formats (Photo courtesy of SCIENION)

Multiplex Immunoassay Developed for Confirmation and Typing of HTLV Infections

Human T-Cell Lymphotropic Viruses (HTLV) type 1 and type 2 account for an estimated five to 10 million infections worldwide and are transmitted through breast feeding, sexual contacts and contaminated... Read more

Pathology

view channel
Image: The Ventana BenchMark Ultra autostainer is for cancer diagnostics with automation and the test menu include IHC, ISH, and FITC tests (Photo courtesy of Ventana Medical System)

Specific Biomarker Investigated for Triple-Negative Breast Cancer Diagnosis

Triple-negative breast cancer (TNBC) is defined by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression and comprises a heterogeneous... Read more

Technology

view channel
Image: PKeye Workflow Monitor System (Photo courtesy of PerkinElmer, Inc.)

PerkinElmer’s New Cloud-Based Platform Enables Laboratory Personnel to Remotely Manage Its Instruments in Real-Time

PerkinElmer, Inc. (Waltham, MA; USA) has launched its PKeye Workflow Monitor, a cloud-based platform enabling laboratory personnel to remotely manage and monitor their PerkinElmer instruments and workflows... Read more

Industry

view channel
Illustration

Global Lateral Flow Assay Market to Reach Nearly USD 6.5 Billion by 2031 Due to Surge in Demand for Rapid POC Testing

The global lateral flow assay market is projected to grow at a CAGR of around 5% from USD 3.7 billion in 2020 to over USD 6.4 billion by 2031, driven by the growing adoption of home-based lateral flow... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.