We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Proteogenomic and Metabolomic Studies Characterize Human Glioblastoma

By LabMedica International staff writers
Posted on 23 Feb 2021
Glioblastoma (GBM) is an aggressive type of cancer that can occur in the brain or spinal cord. More...
Glioblastoma forms from cells called astrocytes that support nerve cells. Glioblastoma can occur at any age, but tends to occur more often in older adults. It can cause worsening headaches, nausea, vomiting and seizures.

The cellular origin of glioblastoma is unknown. Because of the similarities in immunostaining of glial cells and glioblastoma, gliomas such as glioblastoma have long been assumed to originate from glial-type cells. More recent studies suggest that astrocytes, oligodendrocyte progenitor cells, and neural stem cells could all serve as the cell of origin.

Medical and Genetic Scientists associated with Washington University in St. Louis (St. Louis, MO, USA) used whole-genome sequencing, exome sequencing, RNA sequencing, microRNA-seq, single-nuclei RNA-seq, array-based methylation profiling, mass spectrometry, and other approaches to assess genomic, metabolomic, proteomic, and post-translational modification patterns in 99 untreated GBM tumors and 10 normal, non-matched brain samples.

The findings, pointed to four GBM immune subtypes for the nervous system cancer, including an immune subtype enriched for tumors with IDH mutations. The team identified key phosphorylation events (e.g., phosphorylated PTPN11 and PLCG1) as potential switches mediating oncogenic pathway activation, as well as potential targets for EGFR-, TP53-, and RB1-altered tumors. Immune subtypes with distinct immune cell types were discovered using bulk omics methodologies, validated by snRNA-seq, and correlated with specific expression and histone acetylation patterns. Histone H2B acetylation in classical-like and immune-low GBM is driven largely by bromodomains (BRDs), CREB binding protein (CREBBP), and Histone acetyltransferase p300 (EP300). Integrated metabolomic and proteomic data identified specific lipid distributions across subtypes and distinct global metabolic changes in IDH-mutated tumors.

One of the immune subgroups was marked by a dearth of T cells and high levels of infiltrating macrophage immune cells, for example, while another immune subtype was enriched for T lymphocyte and natural killer cell levels and IDH mutations, but was poor in macrophage-microglia immune cell infiltration. Yet another immune subtype had middling macrophage levels, the team noted, and a fourth immune subtype lacked significant levels of immune cells in general.

The authors concluded that rapid advancement of single-cell genomics and proteomics technologies will facilitate deeper analyses of GBM heterogeneity and tumor microenvironment interactions. They hope these advances will improve patient stratification for clinical trials and lead, ultimately, to personalized treatments. The study was published on February 11, 2021 in the journal Cancer Cell.

Related Links:
Washington University in St. Louis


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.