Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




Proteogenomic and Metabolomic Studies Characterize Human Glioblastoma

By LabMedica International staff writers
Posted on 23 Feb 2021
Glioblastoma (GBM) is an aggressive type of cancer that can occur in the brain or spinal cord. More...
Glioblastoma forms from cells called astrocytes that support nerve cells. Glioblastoma can occur at any age, but tends to occur more often in older adults. It can cause worsening headaches, nausea, vomiting and seizures.

The cellular origin of glioblastoma is unknown. Because of the similarities in immunostaining of glial cells and glioblastoma, gliomas such as glioblastoma have long been assumed to originate from glial-type cells. More recent studies suggest that astrocytes, oligodendrocyte progenitor cells, and neural stem cells could all serve as the cell of origin.

Medical and Genetic Scientists associated with Washington University in St. Louis (St. Louis, MO, USA) used whole-genome sequencing, exome sequencing, RNA sequencing, microRNA-seq, single-nuclei RNA-seq, array-based methylation profiling, mass spectrometry, and other approaches to assess genomic, metabolomic, proteomic, and post-translational modification patterns in 99 untreated GBM tumors and 10 normal, non-matched brain samples.

The findings, pointed to four GBM immune subtypes for the nervous system cancer, including an immune subtype enriched for tumors with IDH mutations. The team identified key phosphorylation events (e.g., phosphorylated PTPN11 and PLCG1) as potential switches mediating oncogenic pathway activation, as well as potential targets for EGFR-, TP53-, and RB1-altered tumors. Immune subtypes with distinct immune cell types were discovered using bulk omics methodologies, validated by snRNA-seq, and correlated with specific expression and histone acetylation patterns. Histone H2B acetylation in classical-like and immune-low GBM is driven largely by bromodomains (BRDs), CREB binding protein (CREBBP), and Histone acetyltransferase p300 (EP300). Integrated metabolomic and proteomic data identified specific lipid distributions across subtypes and distinct global metabolic changes in IDH-mutated tumors.

One of the immune subgroups was marked by a dearth of T cells and high levels of infiltrating macrophage immune cells, for example, while another immune subtype was enriched for T lymphocyte and natural killer cell levels and IDH mutations, but was poor in macrophage-microglia immune cell infiltration. Yet another immune subtype had middling macrophage levels, the team noted, and a fourth immune subtype lacked significant levels of immune cells in general.

The authors concluded that rapid advancement of single-cell genomics and proteomics technologies will facilitate deeper analyses of GBM heterogeneity and tumor microenvironment interactions. They hope these advances will improve patient stratification for clinical trials and lead, ultimately, to personalized treatments. The study was published on February 11, 2021 in the journal Cancer Cell.

Related Links:
Washington University in St. Louis


New
Gold Member
Latex Test
SLE-Latex Test
Serological Pipet Controller
PIPETBOY GENIUS
New
Modular Hemostasis Automation Solution
CN Track
New
Candida Glabrata Test
ELIchrom Glabrata
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.