We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Autoantibody Timing Predicts Genetically At-Risk Children for Diabetes

By LabMedica International staff writers
Posted on 11 Nov 2020
Print article
Image: Autoantibody order, timing helps predict genetically susceptible children most likely to get type 1 diabetes (Photo courtesy of the Morsani College of Medicine).
Image: Autoantibody order, timing helps predict genetically susceptible children most likely to get type 1 diabetes (Photo courtesy of the Morsani College of Medicine).
While antibodies are molecules produced by the body's immune system to detect and destroy specific viruses, bacteria and other harmful substances, autoantibodies are antibodies that target a person's own healthy tissue. In the case of type 1 diabetes (T1D), a misdirected autoimmune response attacks the pancreas and gradually destroys the organ's insulin-producing beta cells.

Without the hormone insulin the body cannot regulate its blood sugar levels, which can cause serious, long-term medical complications such as cardiovascular disease, nerve and kidney damage, and vision loss. Children (and adults) with T1D must monitor their dietary intake and exercise and take insulin injections, or use an insulin pump, daily to help control their blood sugar levels.

A large team of international scientists working with the University of South Florida (Tampa, FL, USA) followed children with increased genetic risk for T1D, every three months, from the age of three months up to 15 years, for the development of a first-appearing autoantibody directed against pancreatic insulin-producing cells: glutamic acid decarboxylase antibody (GADA), insulin autoantibody (IAA), or insulinoma-associated-protein-2 autoantibody (IA2-2A). The team also looked for the subsequent appearance of a second autoantibody and further progression to T1D. Zinc transporter 8 autoantibody (ZnT8A) was only measured in children who developed an IAA, GADA, or IA-2A.

The team reported that of the 608 study participants, all testing positive for either a first-appearing IAA or GADA, more than half (336) developed a second autoantibody. Furthermore, 53% of these 336 children with a second antibody progressed to T1D within about 3.5 years. Only about 10% of the 272 children testing positive for a single autoantibody at the end of the follow-up for this study had transitioned to T1D.

The younger the child at the time they tested positive for a first autoantibody, the greater their risk for developing a second autoantibody. Conversely, the risk for T1D decreased if the first autoantibody appeared when the child was older. Children testing positive for a second autoantibody, regardless of the type, had at least a five-fold increased risk of progressing to T1D, compared to children who stayed single autoantibody positive. IA-2A, as a second autoantibody, conferred the highest risk, compared with GADA, IAA, or ZnT8A. Risk of progression to T1D was influenced by how quickly the second autoantibody appeared. Emergence of a second autoantibody within a year of the first doubled the risk of progression to T1D. Children's likelihood of developing T1D declined as the months between the first and second-appearing autoantibodies increased.

Kendra Vehik, PhD, a professor of epidemiology and lead author of the study, said, “If a clinician knows that a young child testing positive for IA-2A as their second-appearing autoantibody will be at a higher risk to more rapidly progress to type 1 diabetes, they can reduce the risk of symptomatic onset of disease. Clinicians can also educate the parents about the early signs of disease, such as, weight loss, extreme thirst, more frequent urination, or other diabetic ketoacidosis (DKA) symptoms.” The study was published in the September, 2020 edition of the journal Diabetes Care.

Related Links:
University of South Florida

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Luteinizing Hormone Assay
DRG LH-Serum ELISA Kit
New
HbA1c Test
HbA1c Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Molecular Diagnostics

view channel
Image: Macrophages infected with mycobacterium tuberculosis (Photo courtesy of MIT)

New Molecular Label to Help Develop Simpler and Faster Tuberculosis Tests

Tuberculosis (TB), the deadliest infectious disease globally, is responsible for infecting an estimated 10 million people each year and causing over 1 million deaths annually. While chest X-rays and molecular... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.