We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
23 Sep 2021 - 25 Sep 2021

Cancer Cells Reprogram Immune Cells to Assist in Metastasis

By LabMedica International staff writers
Posted on 20 Jul 2020
Print article
Image: A blue tumor organoid surrounded by red NK cells (Photo courtesy of Isaac Chan, MD, PhD).
Image: A blue tumor organoid surrounded by red NK cells (Photo courtesy of Isaac Chan, MD, PhD).
Natural killer (NK) cells, a type of immune cell, are known to limit metastasis by inducing the death of cancer cells, but metastases still form in patients, so there must be ways for cancer cells to escape.

The loss of immunosurveillance is critical to breast cancer metastasis, immune checkpoint blockade has not been as effective in treating metastatic breast cancer as in melanoma or lung cancer. Breast cancer cells must overcome NK cell surveillance to form distant metastases, yet currently there is limited understanding of how metastatic cancer cells escape NK cell regulation.

Oncologists at the Johns Hopkins Kimmel Cancer Center (Baltimore, MD, USA) and their colleagues used ex vivo and in vivo models of metastasis, to establish that keratin-14+ breast cancer cells are vulnerable to NK cells. They then discovered that exposure to cancer cells causes NK cells to lose their cytotoxic ability and promote metastatic outgrowth.

Gene expression comparisons revealed that healthy NK cells have an active NK cell molecular phenotype, whereas tumor-exposed (teNK) cells resemble resting NK cells. Receptor–ligand analysis between teNK cells and tumor cells revealed multiple potential targets. The team next showed that treatment with antibodies targeting T cell immunoreceptor with Ig and ITIM domains (TIGIT), antibodies targeting killer cell leptin-like receptor G1 (KLRG1), or small-molecule inhibitors of DNA methyltransferases (DMNT) each reduced colony formation. Combinations of DNMT inhibitors with anti-TIGIT or anti-KLRG1 antibodies further reduced metastatic potential.

Isaac Chan, MD, PhD, a Medical Oncologist and lead author of the study, said, “Metastatic disease is the main driver of breast cancer deaths, and we need a deeper understanding of how and why it occurs. Our study has identified a new strategy for cancer cells to co-opt the immune system. If we could prevent or reverse natural killer cell reprogramming in patients, it could be a new way to stop metastasis and reduce breast cancer mortality.”

The authors proposed that NK-directed therapies targeting these pathways would be effective in the adjuvant setting to prevent metastatic recurrence. The process may also apply to other cancer types. Immunotherapies that target NK cells could also potentially be used together with existing immunotherapies that stimulate T cells to fight cancer. The study was published on July 9, 2020 in the Journal of Cell Biology.

Related Links:
Johns Hopkins Kimmel Cancer Center

Gold Supplier
Rapid PCR Diagnostic System
Accula System
Gold Supplier
Molecular Diagnostic System
Singuway 9600 Pro
Gold Supplier
Liquid Handling Workstation
AdvanSure E3 SYSTEM
Urea Breath Test System for H. Pylori
BreathID Hp Lab

Print article



view channel
Image: The CellSearch Circulating Tumor Cell Kit is intended for the enumeration of circulating tumor cells of epithelial origin (CD45-, EpCAM+, and cytokeratins 8, 18+, and/or 19+ and PD-L1) in whole blood (Photo courtesy of CellSearch/Menarini Silicon Biosystems)

PD-L1 Expression in Circulating Tumor Cells Investigated for NSCLC

In non-small cell lung cancer (NSCLC), analysis of programmed cell death ligand 1 (PD-L1) expression in circulating tumor cells (CTCs) is a potential alternative to overcome the problems linked to the... Read more


view channel

Global Digital Polymerase Chain Reaction (dPCR) Market Projected to Reach Close to USD 1.15 Billion by 2028

The global digital polymerase chain reaction (dPCR) market is projected to grow at a CAGR of more than 9% from over USD 0.50 billion in 2020 to nearly USD 1.15 billion by 2028, driven primarily by rising... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.