We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Biomarkers Panel Used for Pleural and Peritoneal Effusions Diagnosis

By LabMedica International staff writers
Posted on 25 Sep 2019
Print article
Image: The MAGPIX fluorescent-based analytical instrument (Photo courtesy of Luminex).
Image: The MAGPIX fluorescent-based analytical instrument (Photo courtesy of Luminex).
The quantification of biomarkers in cavity fluids may aid in the etiological diagnosis and in patients' management. Laboratory investigation of cavity effusions involves the evaluation of biochemical, immunological, microbiological, molecular and cellular parameters.

The broad spectrum of etiologic causes of pleural effusion (PE) and peritoneal effusion (PerE) justifies studies with biomarkers quantified in samples obtained through thoracentesis and/or paracentesis, procedures considered minimally invasive and at a low risk for patients.

Scientists at the University of Sao Paulo (San Paulo, Brazil) evaluated Samples of pleural or peritoneal fluid from 120 patients submitted to thoracentesis or paracentesis for diagnostic investigation. Each sample was representative of one patient. The team evaluated the following biomarkers: carcinoembryonic antigen (CEA), vascular endothelial growth factor A (VEGF-A) programmed death-ligand 1 (PD-L1/B7-H1), neutrophil gelatinase-associated lipocalin (NGAL), triggering receptor expressed in myeloid cells type-1(TREM-1), and gamma-interferon (IFNγ).

Samples of PE or PerE were prepared for analysis in a 96-well plate utilizing a custom Luminex Human Magnetic Assay. CEA, VEGF-A, PD-L1, NGAL, TREM-1 and IFNγ were quantified using a MAGPIX analytical test instrument. The concentrations of Calprotectin were obtained by a ‘sandwich’ ELISA test with CALP human kit and analyzed on Victor X3 plate reader in a 450 nm low-pass absorbance. The assay used for adenosine desaminase (ADA) was the Quimiada Adenosina Deaminase kit, and a concentration above 30 U/L is presumptive of tuberculosis.

The team reported that for malignant effusion (ME) diagnosis, CEA and NGAL presented superior performance than VEGF-A, PD-L1 and CALP. A CEA-NGAL association showed good sensitivity (86.6%) and accuracy (79.2%). For non-tuberculous infectious effusion (NTBIE), NGAL presented the best performance with sensitivity (75.0%), specificity (62.0%) and accuracy (65.0%) higher than TREM-1 and CALP; however, when associated, although with good sensitivity, there was important decrease in specificity. For tuberculous pleural effusion (TPE), IFNγ-ADA presented excellent sensitivity (100%), specificity (87.6%), NPV (100%) and accuracies (~90%).

The authors concluded that a hybrid panel composed by the biomarkers CEA, NGAL, IFNγ and ADA seems to be useful in discriminating between ME and TPE etiology, both lymphocytic effusions. For non-tuberculous infectious effusion, the panel used did not demonstrate diagnostic advantages over the classic literature parameters. The study was published in the October 2019 issue of the journal Clinica Chimica Acta.

Related Links:
University of Sao Paulo

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.