We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Cancer Risk Assessed by Circulating Protein Biomarker Panel

By LabMedica International staff writers
Posted on 10 Aug 2018
The question has been asked whether a risk prediction model based on circulating protein biomarkers improve on a traditional risk prediction model for lung cancer and the current USA screening criteria.

Current screening criteria for lung cancer risk assessments often miss a large proportion of cases. More...
It has recently been suggested that a panel of specific circulating protein biomarkers may improve lung cancer risk assessment and may be used to define eligibility for computed tomography screening.

A large international consortium of scientists led by International Agency for Research on Cancer (Lyon, France) collected prediagnostic samples from 108 ever-smoking patients with lung cancer diagnosed within one year after blood collection and samples from 216 smoking-matched controls from the Carotene and Retinol Efficacy Trial (CARET) cohort. The samples were used to develop a biomarker risk score based on four proteins (cancer antigen 125 [CA125], carcinoembryonic antigen [CEA], cytokeratin-19 fragment [CYFRA 21-1], and the precursor form of surfactant protein B [Pro-SFTPB]). The biomarker score was subsequently validated blindly using absolute risk estimates among 63 ever-smoking patients with lung cancer diagnosed within one year after blood collection and 90 matched controls from two large European population-based cohorts.

In the validation study of 63 ever-smoking patients with lung cancer and 90 matched controls (age, 57.7 ± 8.7 years; 68.6% men) from the cohorts, an integrated risk prediction model that combined smoking exposure with the biomarker score yielded an AUC of 0.83 (95% CI, 0.76-0.90) compared with 0.73 (95% CI, 0.64-0.82) for a model based on smoking exposure alone. With an overall specificity of 0.83, based on the US Preventive Services Task Force (USPSTF) screening criteria, the sensitivity of the integrated risk model was 0.63 compared to 0.43 for the smoking model. Additionally, at an overall sensitivity of 0.41 the integrated risk model yielded a specificity of 0.95 compared with 0.86 for the smoking model, based on the USPSTF screening criteria.

The authors concluded that these improvements in sensitivity and specificity were consistently observed across each evaluated stratum. Their findings also indicated that the improvement in discrimination afforded by the biomarker score is more modest beyond the initial year after blood draw, which suggests that an annual biomarker test may be necessary in a screening program. The study was published on July 12, 2018, in the journal JAMA Oncology.

Related Links:
International Agency for Research on Cancer


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Chagas Disease Test
LIAISON Chagas
New
Pipet Controller
Stripettor Pro
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: Schematic diagram of multimodal single-cell MSI using tapping-mode scanning probe electrospray ionization (Photo courtesy of Yoichi Otsuka)

New Technology Improves Understanding of Complex Biological Samples

Tissues are composed of a complex mixture of various cell types, which complicates our understanding of their biological roles and the study of diseases. Now, a multi-institutional team of researchers... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.