We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




DNA Code Unraveled for Rare Neurologic Disease

By LabMedica International staff writers
Posted on 04 Jul 2018
Neuromyelitis optica (NMO) is a potentially fatal disease in which the immune system attacks cells in the optic nerve and spinal cord, leaving some patients blind and/or paralyzed.

Patients can recover most of their function through medications and physical rehabilitation, though many are misdiagnosed with multiple sclerosis and face a higher risk of relapse and permanent damage due to lack of proper therapy.

A team of scientists from various institution and led by those at the Broad Institute (Cambridge, MA, USA) used genetic data from more than 1,200 participants which may help scientists improve treatments of neuromyelitis optica (NMO). More...
The team meta-analyzed whole-genome sequences from 86 NMO cases and 460 controls with genome-wide single nucleotide polymorphism (SNP) array from 129 NMO cases and 784 controls to test for association with SNPs and copy number variation (total 215 NMO cases, 1,244 controls).

The investigators determined anti-aquaporin 4 (AQP4) serostatus via standardized assays, including enzyme-linked immunosorbent assay (ELISA) or cell-based assay (CBA). ELISA-based detection was obtained from one of the numerous laboratories that offer the test. CBAs were obtained from the Mayo Clinic Laboratories (Rochester, MN, USA). The team also obtained DNA from 144 NMO cases (78 NMO-immunoglobulin G (IgG)+ / 68 NMO-IgG−). Sequence reads were processed and aligned to a reference genome. Other techniques were used to support the study.

The team identified two independent signals in the major histocompatibility complex (MHC) region associated with NMO-IgG+, one of which may be explained by structural variation in the complement component four genes. Mendelian Randomization analysis revealed a significant causal effect of known systemic lupus erythematosus (SLE), but not multiple sclerosis (MS), risk variants in NMO-IgG+.

Benjamin Greenberg, MD, a neurologist and a senior author of the study, said, “This outcome shows that doing in-depth studies pays off, and more studies like this may be needed to find the problem behind other rare conditions. By taking a rare disease and doing more than just reading every third or fourth page of genetic code, we have modeled NMO in a much more accurate way.” The study was published on May 16, 2018, in the journal Nature Communications.

Related Links:
Broad Institute
Mayo Clinic Laboratories


New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Collection and Transport System
PurSafe Plus®
New
ESR Analyzer
TEST1 2.0
New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.