Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Tool Predicts Deadly Form of Mycosis Fungoides

By LabMedica International staff writers
Posted on 21 May 2018
Mycosis fungoides (MF), the most common cutaneous T cell lymphoma (CTCL) is a malignancy of skin-tropic memory T cells. More...
Most MF cases present as early stage (stage I A/B, limited to the skin), and these patients typically have a chronic, indolent clinical course.

However, a small subset of early-stage cases develops progressive and fatal disease and because outcomes can be so different, early identification of this high-risk population is an urgent unmet clinical need. If identified early, patients with this aggressive form of MF may be eligible for a stem cell transplant to cure the disease, but once MF progresses and becomes treatment-resistant, it is nearly impossible to achieve the complete remission required for a successful stem cell transplant.

Scientists from the Brigham and Women’s Hospital (Boston, MA, USA) and their colleagues evaluated the use of next-generation high-throughput DNA sequencing of the T cell receptor β gene (TCRB) in lesional skin biopsies to predict progression and survival in a discovery cohort of 208 patients with CTCL (177 with MF) from a 15-year longitudinal observational clinical study. They compared these data to the results in an independent validation cohort of 101 CTCL patients (87 with MF).

The team used high-throughput DNA sequencing, a technique that allowed them to sequence massive amounts of DNA at once, producing a snapshot of the TCRB genes from a large number of cells at the site of the lesion. The team could use this to measure “tumor clone frequency (TCF)” – the percentage of T cells that are clones of the mutated MF lymphoma T cells. An elevated TCF predicted the likelihood of progression and overall survival of patients with MF with high sensitivity and specificity.

The team found that in early-stage patients, a TCF of more than 25% in the skin was a stronger predictor of progression than any other established prognostic factor (stage IB versus IA, presence of plaques, high blood lactate dehydrogenase concentration, large-cell transformation, or age). The TCF therefore may accurately predict disease progression in early-stage MF.

Thomas S. Kupper, MD, a professor of Dermatology and senior author of the study, said, “Under the microscope, benign T cell and MF T cells are hard to distinguish. However, every T cell has a unique DNA sequence of its T cell receptor, which we can detect by high-throughput DNA sequencing. High throughput DNA sequencing and calculations of TCF allow us to make predictions that would never before have been possible. As a physician who has treated patients with this disease for decades, I am excited to be involved with work that so directly and profoundly affects the care and management of these patients.” The study was published on May 9, 2018, in the journal Science Translational Medicine.

Related Links:
Brigham and Women’s Hospital


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Collection and Transport System
PurSafe Plus®
New
Hemodynamic System Monitor
OptoMonitor
New
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.