We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Method Determines Efficacy of Immune Cells

By LabMedica International staff writers
Posted on 09 Nov 2016
The frequency of pathogen-specific and tumor-specific T cells and their functional activity reflect the effectiveness of immune responses and can serve as useful diagnostic and prognostic indicators.

The immune system orchestrates large and small scale attacks on innumerous targets: viruses, bacteria, cancer, but it also misfires causing allergy or autoimmune reactions. More...
Compounding the problem, not every immune reaction is equal, sometimes a necessary reaction is not strong enough or at times it is too strong.

A team of scientists at Thomas Jefferson University (Philadelphia, PA, USA) has developed a new way to determine the strength of an immune response to a particular antigen. The test works by attaching immune cells that can both respond to as well as display potential immune targets, and then flowing potential antigens over the immune cells to look for "matches." If the addition of antigen leads to a match between displayer and responder, the two cells attach to each other with their receptors. That attachment triggers calcium channels to open, which then activates a green fluorescence in the cells. The green light can be easily detected by microscope and quantified by image-reading software.

The test called the CaFlux assay can help see both how many T-cells respond in a given sample, as well as how powerfully and how rapidly each individual cell responds over time. These three pieces of information could more accurately predict how a person would react to a wide array of immune threats, from viral or bacterial attacks to allergens. The test could be useful in developing better vaccines, assessing the potency of immunotherapy interventions, and understanding the severity of disease, and therefore the appropriate level of medical intervention. Magnetic sorting of T-cell subsets, the CD8 T cells were purified from frozen human peripheral blood mononuclear cells (PBMC) by negative selection using MACS Cell Separation Technology (Miltenyi Biotec, Bergisch Gladbach, Germany).

The team tested T-cells from a bone marrow transplant recipient for reactivity to cytomegalovirus (CMV). Most people harbor CMV, but the infection is usually kept in check by a healthy immune system. They tested the new T cells after the transplant, the patient’s cells showed a slow and weak response to the same antigens, or CMV targets. Neal Flomenberg, MD, a professor of Medical Oncology, and a co-author of the study, said, “That weak response was mirrored by what happened in the clinic. The patient's CMV reactivated while the immune system was still rebooting and unable to mount a strong response against CMV, and he had to be treated for the infection. Had we been able to monitor this patient's immune system's ability to respond to CMV, we may have been able to tailor his treatment to better keep the CMV in check.” The study was published on October 27, 2016, in the journal Nature Communications.

Related Links:
Thomas Jefferson University
Miltenyi Biotec

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Creatine Kinase-MB Assay
CK-MB Test
New
Hemoglobin/Haptoglobin Assay
IDK Hemoglobin/Haptoglobin Complex ELISA
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Pathology

view channel
Image: AI-analyzed images from the FDM microscope show platelet clumps in motion (Photo courtesy of Hirose et al CC-BY-ND)

AI Microscope Spots Deadly Blood Clots Before They Strike

Platelets are small blood cells that act as emergency responders in the body, rushing to areas of injury to help stop bleeding by forming clots. However, sometimes platelets can overreact, leading to complications.... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.