We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Nanotechnology Detects Antibodies in Blood

By LabMedica International staff writers
Posted on 15 Oct 2012
A rapid and easy-to-use diagnostic test consists of a nanometer-scale DNA "switch" that can quickly detect antibodies specific to a wide range of diseases.

The test may aid efforts to build point-of-care devices for quick medical diagnosis of sexually transmitted diseases (STDs), allergies, autoimmune diseases, and a number of other diseases.

Bioengineers at University of California (Santa Barbara, CA, USA) and the University of Rome Tor Vergata (Italy) developed a versatile electrochemical switch that supports the rapid, quantitative detection of antibodies directly in whole blood at clinically relevant low-nanomolar concentrations. More...
The design of the switch takes advantage of the occurrence of two antigen-binding sites on each antibody, which are separated by about 12 nm. Specifically, they used DNA to engineer a switch that brings into the close proximity of less than 4 nm two copies of an antigen, epitope, or hapten via the formation of a stem-loop structure.

The team built synthetic molecular switches that signal their state via a change in electric current. This change in current can be measured using inexpensive electronics similar to those in the home glucose-test meter used by diabetics to check their blood sugar. The scientists used these nanoswitches to detect anti-HIV antibodies directly in whole blood in less than five minutes.

This new class of electrochemical switches is versatile, as they support the use of both small-molecule haptens and polypeptide epitopes for antibody detection. The investigators believe that they can likely be engineered to support the detection of even nonantibody targets as long as the targets present two or more recognition sites spaced far enough apart to induce the required stem opening.

Francesco Ricci, PhD, a professor at University of Rome Tor Vergata and cofirst author of the paper, said "A great advantage of these electrochemical nanoswitches is that their sensing principle can be generalized to many different targets, allowing us to build inexpensive devices that could detect dozens of disease markers in less than five minutes in the doctor's office or even at home." The study was published on August 22, 2012, in the Journal of the American Chemical Society.

Related Links:
University of California
University of Rome



New
Gold Member
Latex Test
SLE-Latex Test
Serological Pipet Controller
PIPETBOY GENIUS
New
Chlamydia Trachomatis Test
Aptima Chlamydia Trachomatis Assay
New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.