We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Molecular Tests Equivalent to Bone Marrow Analysis for MM

By LabMedica International staff writers
Posted on 09 May 2018
Print article
Image: The HiSeq 4000 Systems leverage innovative patterned flow cell technology to provide rapid, high-performance sequencing (Photo courtesy of Illumina).
Image: The HiSeq 4000 Systems leverage innovative patterned flow cell technology to provide rapid, high-performance sequencing (Photo courtesy of Illumina).
Multiple myeloma (MM) is a hematologic malignancy characterized by a bone marrow infiltration of clonal plasma cells with heterogeneous involvement in many areas of the bone marrow.

Liquid biopsies including circulating tumor cells (CTCs) and cell-free DNA (cfDNA) have enabled minimally invasive characterization of many cancers, but are rarely analyzed together. Understanding the detectability and genomic concordance of CTCs and cfDNA may inform their use in guiding cancer precision medicine.

A team of scientists led by those at the Dana-Farber Cancer Institute (Boston, MA, USA) examined cfDNA from 107 patients and CTCs from 56 patients. The scientists then matched up cfDNA with bone marrow data from nine patients, and compared all three forms of biopsy in four additional patients. DNA was extracted using circulating nucleic acid kits from 2 to 6 mL of plasma. CTCs and bone marrow plasma cells were isolated using CD138 bead selection after Ficoll of whole blood and bone marrow samples, respectively. Peripheral blood mononuclear cell (PBMC) negative fractions were used for germline DNA.

Genomic DNA was extracted using DNA extraction kit. Samples were prepared for ultra-low pass whole-genome sequencing (ULP-WGS) and up to 96 libraries were pooled and sequenced using 100 bp paired-end runs over 1× lane on a HiSeq2500. Hybrid capture of cfDNA libraries was performed using the Illumina Nextera Rapid Capture Exome kit with custom blocking oligos. Sequencing was performed using 100 bp paired-end runs on an Illumina HiSeq4000 in high-output mode with two to four libraries per lane.

The investigators report that using ultra-low pass whole-genome sequencing; and found both tumor fractions correlate with disease progression. Applying whole-exome sequencing (WES) to cfDNA, CTCs, and matched tumor biopsies, they found concordance in clonal somatic mutations (~99%) and copy number alterations (~81%) between liquid and tumor biopsies. Importantly, analyzing CTCs and cfDNA together enables cross-validation of mutations, uncovers mutations exclusive to either CTCs or cfDNA, and allows blood-based tumor profiling in a greater fraction of patients. The study demonstrates the utility of analyzing both CTCs and cfDNA in MM.

Irene Ghobrial, MD, a medical oncologist and a senior author of the study said, “Until now, we haven't had a good way to measure how multiple myeloma cell populations evolve from precursor stages to diagnosed disease, and then respond to treatments. This is where blood biopsies can make a huge difference, extending our understanding of multiple myeloma, and really giving us a timeline of how the disease progresses and responds to therapy.” The study was published on April 27, 2018, in the journal Nature Communications.

Related Links:
Dana-Farber Cancer Institute

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Blood Gas and Chemistry Analysis System
Edan i500
New
Nutating Mixer
Enduro MiniMix

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The breakthrough could result in a higher success rate using a simple oral swab test before IVF (Photo courtesy of Shutterstock)

POC Oral Swab Test to Increase Chances of Pregnancy in IVF

Approximately 15% of couples of reproductive age experience involuntary childlessness. A significant reason for this is the growing trend of delaying family planning, a global shift that is expected to... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.