We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Genetic Mutations Causing CFZ Syndrome Identified

By LabMedica International staff writers
Posted on 18 Jul 2017
Print article
Image: Myoblast fusion. This graphic depicts normal myoblast (early muscle cells with a single nucleus) fusing together to form myocytes (multinucleated muscle cells) during myogenesis. In Carey-Fineman-Ziter syndrome this cascade is disrupted because of a defect in the membrane protein myomaker (MYMK) required for cell-cell fusion (Photo courtesy of Darryl Leja, NHGRI).
Image: Myoblast fusion. This graphic depicts normal myoblast (early muscle cells with a single nucleus) fusing together to form myocytes (multinucleated muscle cells) during myogenesis. In Carey-Fineman-Ziter syndrome this cascade is disrupted because of a defect in the membrane protein myomaker (MYMK) required for cell-cell fusion (Photo courtesy of Darryl Leja, NHGRI).
Researchers have identified gene mutations that cause, via a defect in myoblasts fusion, the rare inherited muscle disorder Carey-Fineman-Ziter Syndrome (CFZS), and have thereby also uncovered a mechanism underlying muscle development.

CFZS is a congenital myopathy characterized by facial weakness, a small or retracted chin, a cleft palate, and scoliosis, among other symptoms. The researchers, a team of collaborators from several institutions, found that functional mutations in the gene for the protein myomaker (MYMK) cause CFZS. MYMK is necessary for the fusion of myoblast cells into myotubes (muscle fibers) during embryonic development and for regeneration of muscle cells after injury.

"Advances in genomics technology and the power of team science have enabled us to identify the cause of this very rare disease 35 years after it was first described by Dr. John Carey and colleagues from the University of Utah," said study coauthor Francis S. Collins, MD, PhD, National Institutes of Health (NIH) director.

People affected with CFZS have sometimes been misdiagnosed with Moebius syndrome, another very rare disorder characterized by facial paralysis. "This discovery will improve physicians' ability to diagnose this disease and offer families accurate genetic counseling and treatment," said study co-leader Irini Manoli, MD, PhD, physician scientist and staff clinician at NIH’s National Human Genome Research Institute (NHGRI; Bethesda, MD, USA).

"In addition," said Dr. Manoli, "this rare genetic syndrome provides novel insights into the effects of muscle development on craniofacial and skeletal bone formation" – opening a new path of exploration and for development of muscle regeneration tools.

The study goal was to learn more about the genetics and clinical characteristics of Moebius syndrome and other congenital facial weakness disorders. The Moebius Syndrome Research Consortium brought 63 patients and their families for detailed multi-system evaluations, including brain and muscle imaging studies and muscle biopsies. The researchers collaborated through the Opportunities for Collaborative Research at the NIH Clinical Center, a new funding mechanism that encourages intramural and extramural researchers to work together.

The researchers performed detailed phenotyping, and employed exome sequencing of blood DNA in affected siblings from 3 unrelated families, as well as a muscle biopsy in one of the affected individuals. To identify genomic mutations associated with CFZS, three laboratories -led separately by Elizabeth Engle, MD, of Boston Children's Hospital (USA), Stephen Robertson, MD, of University of Otago (New Zealand), and John Carey, MD, at University of Utah (USA)- analyzed exome sequence data from each of the 3 families.

Among the genes harboring mutations identified in each family, only the gene for MYMK was common to all three. A MYMK knockout mouse model displayed a complete lack of muscle development, leading to early death of the newborn mice, making the mymk gene a good candidate for further studies. Using CRISPR-Cas9 technology, a team led by first author Silvio Alessandro Di Gioia, PhD, and Dr. Engle generated zebrafish with mutated mymk. Affected mutant zebrafish were smaller and had abnormal muscle development and jaw deformities, resembling the patient phenotype. They then performed functional studies on the severity of each of the genomic mutations.

They were able to correct affected zebrafish muscles by injecting the normal human MYMK protein into the mutant fish, a success that lends hope for restoring MYMK function in muscles as a treatment for CFZS and for reducing potentially progressive features of this disorder.

Only 8 people worldwide have been diagnosed with CFZS with MYMK mutations. Now mymk can be added to the diagnostic gene panels for congenital myopathies, which will improve diagnosis and add to understanding of the spectrum of disease severity and outcome.

The study, by Di Gioia SA et al, was published July 6, 2017, in the journal Nature Communications.

Related Links:
National Human Genome Research Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The novel test uses an existing diagnostic procedure as its basis to target the Epstein Barr Virus (Photo courtesy of 123RF)

Blood Test Measures Immune Response to Epstein-Barr Virus in MS Patients

Multiple sclerosis (MS) is a chronic neurological condition for which there is currently no cure. It affects around three million people globally and ranks as the second most common cause of disability... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.