We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Fast, Fully Automated Microfluidic Device Predicts Effectiveness of Cancer Treatment

By LabMedica International staff writers
Posted on 03 Apr 2023
Print article
Image: New microfluidics physics-based device to predict cancer therapy response (Photo courtesy of University of Barcelona)
Image: New microfluidics physics-based device to predict cancer therapy response (Photo courtesy of University of Barcelona)

Designing new technologies for personalized cancer treatment is a significant challenge in the ongoing battle against cancer. Tumors possess unique characteristics and predictive indicators of a patient's response to treatment, based on the tumor's molecular characteristics, such as DNA mutations, is a crucial step forward in oncology. Precision medicine seeks to provide a tailored treatment for cancer patients, both adult and pediatric, that is specific to their pathology. Determining whether a patient can benefit from a particular treatment before initiating therapy could provide a boost to personalized cancer treatment. Now, a microfluidic device can quickly and automatically predict the effectiveness of cancer treatment by using a tiny amount of cells from biopsies and without the need for specialized technical staff.

The microfluidic device called microfluidic dynamic BH3 profiling (μDBP) has been developed by researchers at the University of Barcelona (Barcelona, Spain) and the Institute for Bioengineering of Catalonia (IBEC, Barcelona, Spain). The dynamic BH3 profiling (DBP) was among the first functional assays to be successfully tested for predicting treatment in various types of cancer. This system exposes cancer cells to different therapeutic options to quickly identify the most effective treatment for a patient. This approach is conceptually similar to the use of antibiograms to identify appropriate antibiotics for bacterial infections. However, the μDBP microfluidic device represents a significant improvement over previous DBP systems. This new device requires fewer cancer cells to test potential therapies, automates the process, and can be used without requiring specialized technical staff, making it easier to apply in a clinical setting.

The initial step in testing a biopsy sample involves dissociating it into individual cells using mechanical and enzymatic methods. The processed sample is then filtered to obtain individual cells, which are subjected to the desired treatments before being seeded into the microfluidic device. The use of the μDBP microfluidic platform, which contains small wells for cell seeding, reduces the number of cells required to test a treatment, making it possible to test a larger number of drugs, which is a significant breakthrough. The paper published in the journal npj Precision Oncology is the first to use microfluidics for performing the functional assay of the DBP. Unlike other versions of the assay that require expensive machinery and specialized staff, such as the high-throughput DBP with automated plates and dispensers that test hundreds of treatments, the new μDBP device is designed to test treatments in situ quickly, easily, and automatically, without the need for expensive machinery or specialized staff. The team is currently working on a new prototype of the μDBP device that incorporates technical improvements and aims to gather more experimental evidence with primary samples to demonstrate its clinical usefulness in improving the treatment of various cancers, both pediatric and adult.

“The biggest advantage of the μDBP device is also the automation of the whole process, which would help to implement this functional methodology on a clinical scale. All these advantages would ease the adoption of DBP in hospitals as a routine trial,” according to the researchers.

“DBP has been used to identify the efficacy of treatments on a preclinical and clinical scale in many different cancers, both solid and liquid. These studies have used cell lines, animal models and primary samples with high predictive ability in all cases. However, this assay has not yet been widely applied in hospitals,” said lecturer Joan Montero. “So far, several studies have found a good correlation between DBP results and clinical response in primary leukemia samples. There are currently several clinical trials underway, and we would like this technology to be implemented in hospitals in the coming years to improve cancer therapies.”

Related Links:
University of Barcelona 
IBEC 

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.