We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Fast, Fully Automated Microfluidic Device Predicts Effectiveness of Cancer Treatment

By LabMedica International staff writers
Posted on 03 Apr 2023
Print article
Image: New microfluidics physics-based device to predict cancer therapy response (Photo courtesy of University of Barcelona)
Image: New microfluidics physics-based device to predict cancer therapy response (Photo courtesy of University of Barcelona)

Designing new technologies for personalized cancer treatment is a significant challenge in the ongoing battle against cancer. Tumors possess unique characteristics and predictive indicators of a patient's response to treatment, based on the tumor's molecular characteristics, such as DNA mutations, is a crucial step forward in oncology. Precision medicine seeks to provide a tailored treatment for cancer patients, both adult and pediatric, that is specific to their pathology. Determining whether a patient can benefit from a particular treatment before initiating therapy could provide a boost to personalized cancer treatment. Now, a microfluidic device can quickly and automatically predict the effectiveness of cancer treatment by using a tiny amount of cells from biopsies and without the need for specialized technical staff.

The microfluidic device called microfluidic dynamic BH3 profiling (μDBP) has been developed by researchers at the University of Barcelona (Barcelona, Spain) and the Institute for Bioengineering of Catalonia (IBEC, Barcelona, Spain). The dynamic BH3 profiling (DBP) was among the first functional assays to be successfully tested for predicting treatment in various types of cancer. This system exposes cancer cells to different therapeutic options to quickly identify the most effective treatment for a patient. This approach is conceptually similar to the use of antibiograms to identify appropriate antibiotics for bacterial infections. However, the μDBP microfluidic device represents a significant improvement over previous DBP systems. This new device requires fewer cancer cells to test potential therapies, automates the process, and can be used without requiring specialized technical staff, making it easier to apply in a clinical setting.

The initial step in testing a biopsy sample involves dissociating it into individual cells using mechanical and enzymatic methods. The processed sample is then filtered to obtain individual cells, which are subjected to the desired treatments before being seeded into the microfluidic device. The use of the μDBP microfluidic platform, which contains small wells for cell seeding, reduces the number of cells required to test a treatment, making it possible to test a larger number of drugs, which is a significant breakthrough. The paper published in the journal npj Precision Oncology is the first to use microfluidics for performing the functional assay of the DBP. Unlike other versions of the assay that require expensive machinery and specialized staff, such as the high-throughput DBP with automated plates and dispensers that test hundreds of treatments, the new μDBP device is designed to test treatments in situ quickly, easily, and automatically, without the need for expensive machinery or specialized staff. The team is currently working on a new prototype of the μDBP device that incorporates technical improvements and aims to gather more experimental evidence with primary samples to demonstrate its clinical usefulness in improving the treatment of various cancers, both pediatric and adult.

“The biggest advantage of the μDBP device is also the automation of the whole process, which would help to implement this functional methodology on a clinical scale. All these advantages would ease the adoption of DBP in hospitals as a routine trial,” according to the researchers.

“DBP has been used to identify the efficacy of treatments on a preclinical and clinical scale in many different cancers, both solid and liquid. These studies have used cell lines, animal models and primary samples with high predictive ability in all cases. However, this assay has not yet been widely applied in hospitals,” said lecturer Joan Montero. “So far, several studies have found a good correlation between DBP results and clinical response in primary leukemia samples. There are currently several clinical trials underway, and we would like this technology to be implemented in hospitals in the coming years to improve cancer therapies.”

Related Links:
University of Barcelona 

Unit-Dose Twist-Tip BFS
Gold Supplier
Blood Glucose Reference Analyzer
Nova Primary
Lung Cancer Molecular Diagnostic Test
Gold Supplier
CLIA Analyzer

Print article


Clinical Chem.

view channel
Image: Electrochemical cells etched by laser on wooden tongue depressor measure glucose and nitrite in saliva (Photo courtesy of Analytical Chemistry)

Biosensor-Fabricated Wooden Tongue Depressor Measures Glucose and Nitrite in Saliva

Physicians often use tongue depressors to examine a patient's mouth and throat. However, it is hard to imagine that this simple wooden tool could actively assess a patient's health. This idea has led to... Read more

Molecular Diagnostics

view channel
Image: Medication, sepsis and inadequate blood supply to the kidneys are potential causes of AKI (Photo courtesy of Freepik)

Blood- And Urine-Based Biomarker Tests Could Identify Treatment of Acute Kidney Injury

Hospitalized patients who experience an acute kidney injury (AKI) often face unfavorable outcomes post-discharge, with limited effective treatment options. AKI can stem from various causes, such as sepsis,... Read more


view channel
Image: The Atellica HEMA 570 and 580 hematology analyzers remove workflow barriers (Photo courtesy of Siemens)

Next-Gen Hematology Analyzers Eliminate Workflow Roadblocks and Achieve Fast Throughput

Hematology testing is a critical aspect of patient care, utilized to establish a patient's health baseline, track treatment progress, or guide timely modifications to care. However, increasing constraints... Read more


view channel
Image: New method reveals bacterial reaction to antibiotics within minutes (Photo courtesy of Freepik)

New Method to Reveal Bacterial Reaction to Antibiotics in Five Minutes Could Help Create Rapid Molecular Test

Severely sick patients suffering from bacterial infections often require immediate treatment to prevent serious health complications, making it vital for physicians to quickly identify the appropriate antibiotic.... Read more


view channel
Image: navify digital solutions can helping labs mitigate unique quality challenges (Photo courtesy of Roche)

Cloud-Based Digital Solution Allows Labs to Track Test Samples along Entire Diagnostic Journey

Diagnosing a disease involves a meticulous procedure of monitoring a patient's diagnostic sample throughout its entire journey, which aids in clinical decision-making. However, there aren't any standardized... Read more


view channel
Electronic biosensor uses DNA aptamers for detecting biomarkers in whole blood samples (Photo courtesy of Freepik)

Electronic Biosensor Detects Biomarkers in Whole Blood Samples without Addition of Reagents

The absence of robust, reliable, and user-friendly bioanalytical tools for early and timely diagnosis of cardiovascular diseases, particularly sudden cardiac arrest, leads to preventable deaths and imposes... Read more


view channel
Image: The global hemostasis diagnostics market is expected to reach USD 3.95 billion by 2025 (Photo courtesy of Freepik)

Global Hemostasis Diagnostics Market Driven by Increase in Invasive Surgical Procedures

Injury or surgery naturally creates bleeding in living beings, which must be stopped to prevent excessive blood loss. The human body implements a protective mechanism known as hemostasis to stop excessive bleeding.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.