We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Dual Role Discovered for Interleukin-17A in Autoimmune Uveitis

By LabMedica International staff writers
Posted on 04 Aug 2020
Autoimmune uveitis (AU) is an inflammatory process of the uveal components of the eye, due to an autoimmune reaction to self-antigens or caused by an innate inflammatory reaction secondary to an external stimulus. More...
It can present as an isolated entity or associated with a systemic autoimmune or autoinflammatory disease.

In autoimmune uveitis, immune cells become abnormally activated and begin to destroy healthy cells, including light-sensing photoreceptors and neurons. A key immune cell involved in this response is the Th17 lymphocyte, which produces several pro-inflammatory molecules known as cytokines. A hallmark of Th17 cells is the ability to produce interleukin-17A (IL-17A), which attracts immune cells called neutrophils that can damage tissue.

Immunologists at the US National Eye Institute (Bethesda, MD, USA) and their international colleagues used mouse models and human peripheral blood samples collected from 14 healthy blood donors (seven males and seven females, ages ranging from 20 to 36 years) by venipuncture and peripheral blood mononuclear cells (PBMC) were isolated. Naive CD45RA+CD4+ T cells were isolated from the PBMCs using naive CD4+ T cell isolation kit II (Miltenyi Biotech, Bergisch Gladbach, Germany). Several other methods were used in the study, including immunofluorescence studies monitored with a Zeiss LSM 880 Confocal Microscope (Carl Zeiss, White Plains , NY, USA).

The team were able to selectively remove IL-17A from Th17 cells and examine the cells' behavior in models of both uveitis and multiple sclerosis (MS). Intriguingly, they found that these cells produce more IL-17F, granulocyte-macrophage colony-stimulating factor (GM-CSF), and possibly other inflammatory molecules. They concluded that these additional inflammatory cytokines compensate for the loss of IL-17A in driving inflammation. They found that when IL-17A binds to its receptor on Th17 cells, this triggers a signaling cascade that turns up the cells' production of an anti-inflammatory molecule, interleukin-24 (IL-24), which was not previously known to be produced by Th17 cells. IL-24 in turn suppresses the rest of the Th17 cells' inflammatory program, turning down the production of cytokines like IL-17F, GM-CSF and possibly IL-22. Thus, without IL-17A, this autocrine loop does not happen, causing the Th17 cells to overproduce the other inflammatory cytokines and thereby increase inflammation.

Rachel Caspi, PhD, chief of the Laboratory of Immunology and senior author of the study, said, “There are some diseases, like psoriasis, where anti-IL-17A therapy has been spectacularly successful. We expected that this would also apply to uveitis, but it turned out not to be the case. This study might explain why clinical trials targeting IL-17A to treat uveitis were not successful, and suggests that a combination approach involving both IL-17A and IL-24 may be more effective in treating autoimmune disorders of the nervous system.”

Related Links:
US National Eye Institute
Miltenyi Biotech
Carl Zeiss


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.