We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




AI Tool Uses Routine Blood Tests to Predict Immunotherapy Response for Various Cancers

By LabMedica International staff writers
Posted on 08 Jan 2025

Immune checkpoint inhibitors, a form of immunotherapy, are a potent tool in the fight against cancer. More...

These inhibitors target the immune system, not the cancer directly. They work by releasing the brakes on immune cells, enhancing their ability to attack cancer. However, these drugs are costly and can cause severe side effects, as well as ineffective for most patients. Thus, selecting the right patients is crucial — matching the drugs to those most likely to benefit. While there are existing methods to predict whether tumors will respond to these drugs, they typically require advanced genomic testing, which is not widely accessible globally. Now, a new tool may soon be available to doctors worldwide that could more accurately predict whether individual cancer patients will benefit from immune checkpoint inhibitors, using only routine blood tests and clinical data.

Researchers from Memorial Sloan Kettering Cancer Center (MSK, New York, NY, USA) and the Tisch Cancer Institute at Mount Sinai (Mount Sinai, New York, NY, USA) have developed an AI-based model called SCORPIO. The model is not only more affordable and accessible but also significantly more effective at predicting patient outcomes than the two biomarkers currently approved by the U.S. Food and Drug Administration (FDA), according to a study published in Nature Medicine. The two FDA-approved biomarkers for predicting response to checkpoint inhibitors are tumor mutational burden (which measures mutations in a tumor) and PD-L1 immunohistochemistry (which evaluates the expression of the PD-L1 protein in tumor samples). Both methods require tumor samples. Genomic testing for mutations is costly and not available everywhere, and there is considerable variability in evaluating PD-L1 expression.

SCORPIO, in contrast, uses readily accessible clinical data, including routine blood tests, such as the complete blood count and the comprehensive metabolic profile, which are performed in clinics worldwide. The researchers discovered that SCORPIO outperforms the current clinical tests. This simple, affordable approach could improve access to care, reduce costs, and ensure that patients receive the right treatments. Initially developed by the MSK team with data from MSK patients, SCORPIO was further enhanced in collaboration with Mount Sinai researchers using ensemble machine learning — an AI technique that combines multiple tools to detect patterns in clinical data from blood tests and treatment outcomes. The model was trained using retrospective data from over 2,000 MSK patients treated with checkpoint inhibitors, spanning 17 types of cancer. The model was then tested on data from an additional 2,100 MSK patients to confirm its high accuracy in predicting outcomes.

Next, the team applied the model to nearly 4,500 patients treated with checkpoint inhibitors across 10 different phase 3 clinical trials worldwide. Additional validation was done with data from almost 1,200 patients treated at Mount Sinai. In total, the study encompasses nearly 10,000 patients from 21 different cancer types, making it the largest cancer immunotherapy dataset to date. This extensive testing and validation were carried out not only to develop a predictive model but to create one that is widely applicable to patients and physicians in various locations. The team plans to collaborate with hospitals and cancer centers globally to test the model using more data from diverse clinical settings while optimizing it based on feedback. They are also working on developing a user-friendly interface for clinicians, making it accessible wherever they may be located.


New
Gold Member
Automatic CLIA Analyzer
Shine i9000
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Laboratory Software
ArtelWare
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: Development of targeted therapeutics and diagnostics for extrapulmonary tuberculosis at University Hospital Cologne (Photo courtesy of Michael Wodak/Uniklinik Köln)

Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis

Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more

Pathology

view channel
Image: The AI tool combines patient data and images to detect melanoma (Photo courtesy of Professor Gwangill Jeon/Incheon National University)

AI Tool to Transform Skin Cancer Detection with Near-Perfect Accuracy

Melanoma continues to be one of the most difficult skin cancers to diagnose because it often resembles harmless moles or benign lesions. Traditional AI tools depend heavily on dermoscopic images alone,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.