We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Abbott Diagnostics- Hematology Division


  Gold Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Automated Detection of Arm-Level Alterations for Individual Cancer Patients

By LabMedica International staff writers
Posted on 25 Sep 2021
Print article
The Quant-iT 1X dsDNA HS (High-Sensitivity) Assay Kit is designed to make DNA quantitation easy and accurate. The assay is highly selective for double-stranded DNA (dsDNA) over RNA (Photo courtesy of Thermo Fisher Scientific)
The Quant-iT 1X dsDNA HS (High-Sensitivity) Assay Kit is designed to make DNA quantitation easy and accurate. The assay is highly selective for double-stranded DNA (dsDNA) over RNA (Photo courtesy of Thermo Fisher Scientific)
Copy number alterations (CNAs) can be gains, losses, or loss of heterozygosity (LOH) of a chromosome segment. Based on the length of the altered segment, they are crudely classified as “focal alterations” and “arm-level alterations”.

While genome-wide techniques to detect arm-level alterations are gaining momentum in hospital laboratories, the high precision and novelty of these techniques pose new challenges. There is no consensus on the definition of an arm-level alteration and a lack of tools to compute them for individual patients.

Clinical Scientists at the Geneva University Hospital (Geneva, Switzerland) performed OncoScan FFPE assays (Thermo Fisher Scientific, Waltham, MA, USA) for more than 400 patients as part of the routine laboratory analyses from 2016 to 2018. The median age at the time of analysis was 59 years for females and 60 years for males. Among these 376 samples, 25 were manually selected to validate the method against the expert annotations from the clinical report. Centered on the content of the clinical reports, the selection was made to represent a diverse range of arm-level alterations in terms of chromosomal distribution, CNA type (Gain versus. Loss of copies), tumor ploidy, and the number of arms altered.

Genomic DNA was purified from Formalin-Fixed Paraffin-Embedded (FFPE) tumor tissues using QIAamp DNA FFPE Tissue Kit (QIAGEN (Hilden, Germany) and quantified using the Quant-iT dsDNA HS Assay Kit (Life Technologies, CA, USA). The arrays were stained in GeneChip Fluidics Station (Thermo Fisher Scientific) and scanned using the Gene Chip scanner. The OncoScan assay has a genome-wide resolution of 300Kbp and an even finer 50-100Kbp resolution on ∼ 900 cancer genes.

The team observed a bimodal distribution of the percentage of bases with CNAs within a chromosomal arm, with the second peak starting at 90% of arm length. They tested two approaches for the definition of arm-level alterations: sum of altered segments (SoS) >90% or the longest segment (LS) >90%. The approaches were validated against expert annotation of 25 clinical cases. The SoS method outperformed the LS method with a higher concordance (SoS: 95.2 %, LS: 79.9 %). Some of the discordances were ultimately attributed to human error, highlighting the advantages of automation. The investigators observed that both computational approaches (SoS and LS) showed a high number of arm-level alterations (Gain (27), Loss (14) and LOH (8)), which were missed by the manual annotation, but detected by this approach.

The authors concluded that their computational method is highly accurate and robust for detecting copy number alterations across diverse cancer types in a clinical setting. The method performs as accurately as human experts, but at a fraction of the time. A software tool also increases reliability, as typographic and annotation errors were observed in some manually curated cases. The method and tool they described are now routinely used in the Department of Clinical Pathology at the Geneva University Hospitals and are available to the community. The study was published on August 25, 2021 in The Journal of Molecular Diagnosis.

Related Links:

Geneva University Hospital 
Thermo Fisher Scientific 
Life Technologies

Gold Supplier
BMP Whole Blood Analyzer
GEM Premier ChemSTAT
Bench-Top Molecular Microarray System
NanoCHIP XL Analyzer
Auto Multiparameter POC Analyzer
Triage MeterPro
Bulk Sorter

Print article



view channel
Image: The Gazelle Hb Variant Test for screening, diagnosis and management of sickle cell disease and related hemoglobinopathies at the point of care (Photo courtesy of Hemex Health)

Point-of-Care Device Accurately Rapidly Diagnoses Sickle Cell Disease

Hemoglobinopathies are the most common autosomal hereditary disorders. Approximately 7% of the global population carries hemoglobin gene mutation including structural hemoglobin variants like sickle hemoglobin... Read more


view channel
Image: The IMMULITE 2000 XPi Immunoassay System provides multiple tests on a single, easy-to-use analyzer, including the thyroid-stimulating immunoglobulin assay (Photo courtesy of Siemens Healthcare)

Immunoassays Evaluated for Thyroid-Stimulating Receptor Antibody in Graves’ Disease

Graves' disease (GD), also known as toxic diffuse goiter, is an autoimmune disease that affects the thyroid. It frequently results in and is the most common cause of hyperthyroidism and it also often results... Read more


view channel
Image: The sciREADER CL2 enables high quality digital colorimetric imaging of various support formats (Photo courtesy of SCIENION)

Multiplex Immunoassay Developed for Confirmation and Typing of HTLV Infections

Human T-Cell Lymphotropic Viruses (HTLV) type 1 and type 2 account for an estimated five to 10 million infections worldwide and are transmitted through breast feeding, sexual contacts and contaminated... Read more


view channel

AI Accurately Detects and Diagnoses Colorectal Cancer from Tissue Scans As Well or Better Than Pathologists

Artificial intelligence (A) can accurately detect and diagnose colorectal cancer from tissue scans as well or better than pathologists, according to a new study. The study, which was conducted by researchers... Read more


view channel
Image: PKeye Workflow Monitor System (Photo courtesy of PerkinElmer, Inc.)

PerkinElmer’s New Cloud-Based Platform Enables Laboratory Personnel to Remotely Manage Its Instruments in Real-Time

PerkinElmer, Inc. (Waltham, MA; USA) has launched its PKeye Workflow Monitor, a cloud-based platform enabling laboratory personnel to remotely manage and monitor their PerkinElmer instruments and workflows... Read more


view channel

Global Point of Care Diagnostics Market to Top USD 35 Billion by 2027 Due to Rising Diabetic Cases

The global point of care diagnostics market is projected to grow at a CAGR of close to 6% from more than USD 23 billion in 2020 to over USD 35 billion by 2027, driven by an increase in the number of diabetic... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.