We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Microfluidic Chip-Based Device to Measure Viral Immunity

By LabMedica International staff writers
Posted on 05 Dec 2024

Each winter, a new variant of influenza emerges, posing a challenge for immunity. More...

People who have previously been infected or vaccinated against the flu may have some level of protection, but how well their immune system "remembers" the previous strain and reacts to the new one can vary. Currently, there is no reliable way to measure this immune “memory.” Now, new research is working to solve this issue with a device designed to assess immune memory in the blood.

When exposed to a virus, white blood cells known as B-cells activate and differentiate. Some of these B-cells become plasma cells that quickly produce antibodies to fight off the infection, while others turn into memory B-cells, remaining dormant until the same or a similar virus reappears. If the virus returns, memory B-cells can swiftly recognize it and produce antibodies to combat it. Presently, measuring circulating antibodies produced by plasma cells is possible, but antibody levels decline over time. It's far more challenging to assess the presence and effectiveness of memory B-cells, especially against new variants of the same virus. In a new project funded by the NIH, researchers from the University of California, Davis (Davis, CA, USA) and Johns Hopkins Bloomberg School of Public Health (Baltimore, MD, USA) have developed a prototype device that measures memory B-cells by testing how well they can adhere to a surface while recognizing the virus under shear flow. This method, called Shear Activated Cell Sorting (SACS), is at the core of their approach.

The device works by using a microfluidic chip with tiny channels. The base of the channel is coated with the influenza virus. As white blood cells flow through these channels, memory B-cells that recognize viral proteins (antigens) will attach to the surface. By adjusting the flow rate, researchers can measure how strongly the cells adhere. As the flow rate increases, shear forces are applied to the cells, pulling them off the surface. By tracking how many cells adhere or are washed away at different flow rates, researchers can gauge their binding affinity, i.e., how well the memory cells stick to the virus. This data allows the scientists to compare how well the cells bind to the original virus they were exposed to and a new variant. The ultimate goal of this device is to provide public health labs with a tool to measure immunity to new flu variants in populations, aiding in public health decision-making. Additionally, this technology could be adapted to assess immunity against SARS-CoV-2 and other viruses.

“There’s no way to assess if the immune system is prepared for the next mutant flu virus, so we need a new vaccine every year,” said Steven George, professor of biomedical engineering at UC Davis and co-principal investigator on the grant. “We’re trying to figure out if you have white blood cells that can respond quickly to a new variant.”


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
ESR Analyzer
TEST1 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.