We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Events

02 Jun 2025 - 04 Jun 2025
11 Jun 2025 - 13 Jun 2025

Low-Cost, Portable Device Detects Colorectal and Prostate Cancer in An Hour

By LabMedica International staff writers
Posted on 28 Oct 2024

Early detection of cancer biomarkers before the disease progresses significantly enhances a patient’s chances of survival. More...

Delays in testing, particularly in areas lacking access to expensive tools and instruments, can adversely affect a patient’s prognosis. The most commonly used commercial method for detecting cancer biomarkers, known as ELISA, requires costly instrumentation and can take 12 hours or more to process a sample. This delay is exacerbated in rural parts of the U.S. or in developing countries, where patient samples often need to be transported to larger cities equipped with specialized instruments, leading to increased cancer mortality rates. Researchers have now developed a portable device that can detect colorectal and prostate cancer more efficiently and affordably than existing methods. This device may prove especially beneficial in developing nations, which face higher cancer mortality rates partly due to obstacles in medical diagnosis.

The device, created by researchers at The University of Texas at El Paso (El Paso, TX, USA), employs a microfluidic design, allowing it to perform multiple functions using very small fluid volumes. It features an innovative “paper-in-polymer-pond” structure where patient blood samples are introduced into tiny wells and onto a specialized type of paper. This paper captures cancer protein biomarkers within the blood samples in just a few minutes. The paper then changes color, with the intensity of the color indicating the type of cancer detected and its stage of progression. Although the initial research has focused on prostate and colorectal cancers, the method could potentially be adapted for various cancer types. The device can analyze a sample in one hour, compared to the 16 hours required by some traditional methods.

According to results published in the journal Lab on a Chip, this device is also approximately 10 times more sensitive than traditional methods, even without the use of specialized instruments. This sensitivity allows it to detect cancer biomarkers present in smaller quantities, typical of early-stage cancer, which a less sensitive device might overlook. Before the device can be made available to the public, a prototype will need to be finalized, and it will require testing on patients in a clinical trial, which may take several years. It will also need final approval from the Food and Drug Administration before being used by healthcare professionals.

“Our new biochip device is low-cost — just a few dollars — and sensitive, which will make accurate disease diagnosis accessible to anyone, whether rich or poor,” said XiuJun (James) Li, Ph.D., a UTEP professor of chemistry and biochemistry. “It is portable, rapid and eliminates the need for specialized instruments.”


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
New
Hepatitis A Rapid Test
Anti-HAV IgM Rapid Test Kit
New
Gold Member
Thyroid-Stimulating Hormone Test
ULTRA-TSH
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: New biomarkers could someday make it easy to spot Parkinson’s disease in a patient’s blood sample (Photo courtesy of Shutterstock)

Unique Blood-Based Genetic Signature Can Diagnose Parkinson’s Disease

Parkinson's disease is primarily recognized for its impact on the central nervous system. Recent scientific progress has shifted focus to understanding the involvement of the immune system in the onset... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Custom hardware and software for the real-time detection of immune cell biophysical signatures in NICU (Photo courtesy of Pediatric Research, DOI:10.1038/s41390-025-03952-y)

First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop

Premature infants are highly susceptible to severe and life-threatening conditions, such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis, which is a bloodstream infection occurring in the... Read more

Pathology

view channel
Image: The new tool is designed for accurate detection of structural variations in clinical samples (Photo courtesy of Karen Arnott/EMBL-EBI and Isabel Romero Calvo/EMBL)

ML Algorithm Accurately Identifies Cancer-Specific Structural in Long-Read DNA Sequencing Data

Long-read sequencing technologies are designed to analyze long, continuous stretches of DNA, offering significant potential to enhance researchers' abilities to detect complex genetic changes in cancer genomes.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.