We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Rapid Detection Technique to Improve Diagnostic Procedure for Bacterial Diseases

By LabMedica International staff writers
Posted on 06 Sep 2023
Print article
Image: Researchers have developed a novel chemosensor-based method for the rapid detection of bacterial toxin (Photo courtesy of Sophia University)
Image: Researchers have developed a novel chemosensor-based method for the rapid detection of bacterial toxin (Photo courtesy of Sophia University)

Lipopolysaccharide (LPS) is a dangerous endotoxin produced by certain bacteria and can trigger harmful immune responses in humans. However, current methods for detecting LPS are slow and complicated. To address this issue, a research team has proposed a system based on a unique fluorescent chemosensor that can detect LPS within minutes, making it ideal for on-site testing in hospitals and pharmaceutical manufacturing facilities.

The COVID-19 pandemic highlighted the need for faster pathogen and toxin screening methods. One such toxin is LPS, which is often referred to as "endotoxins." This molecule is found in the outer membrane of certain bacteria and can be highly harmful, causing fever, inflammation, and even organ failure in severe cases. Surprisingly, despite its prevalence, there are very few effective methods to detect LPS. The current gold standard, the limulus amebocyte lysate (LAL) test, is a manual and time-consuming process that takes several hours and is costly. Other methods for LPS detection are also slow or cumbersome, leading to delays in decision-making in healthcare and pharmaceutical settings. Researchers at Sophia University (Tokyo, Japan) have pioneered a novel approach to rapidly detect LPS in liquid samples. Their new platform has the potential to revolutionize LPS screening.

At the core of this LPS analysis system is a ratiometric fluorescent chemosensor called Zn-dpa-C2OPy. This compound was designed to selectively bind to LPS and exhibits unique fluorescent properties. When not bound to LPS, it forms small spherical vesicles that emit specific-wavelength light upon exposure to UV rays. However, in the presence of LPS, the chemosensor forms complex aggregates with the toxin in the solution. These chemosensor-LPS aggregates emit light at a different wavelength when exposed to UV rays, with their presence further confirmed using spectrometric measurements. To enable high-throughput LPS detection, the researchers combined the chemosensor with a flow injection analysis (FIA) system and a custom dual-wavelength fluorophotometer. This system allows for the easy mixing of a liquid sample with the chemosensor, and the mixture is then analyzed by the fluorophotometer to measure fluorescence changes in response to LPS. By comparing fluorescence intensities, the LPS concentration in the sample can be estimated. One of the major advantages of this system is its speed, as it only takes one minute from sample collection to obtaining results, with the capacity to process 36 samples per hour, making it exceptionally rapid and efficient.

Additionally, the chemosensor-based analysis system is highly sensitive and stable for quantifying LPS, with a detection limit of 11 pM (picomolar), surpassing other reported methods for LPS detection. The system is also simple and animal-friendly, unlike conventional LPS detection methods that use animal resources and may harm them. This makes it an excellent candidate for practical and efficient point-of-care testing for LPS and bacterial contamination in water, clinical, or pharmaceutical samples. With further advancements in this field, the threat of endotoxins can be minimized, enhancing safety in hospitals and improving diagnostic procedures for bacterial diseases.

“Based on this research, an online-endotoxin monitor will be developed and made available for use in real-life situations,” said Takeshi Hashimoto from Sophia University. “Such a monitor could be installed at pharmaceutical production sites, hospital bedsides, and intensive care units to continuously monitor endotoxin concentration in pharmaceutical products, such as water for injection, or the blood of infected patients.”

Related Links:
Sophia University

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Unit-Dose Packaging solution
HLX
New
Urine Collection Container
Urine Monovette
New
Human Immunodeficiency Virus Assay
RealLine HIV Quantitative Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Genome sequencing technology has the potential to detect thousands of genetic disease (Photo courtesy of 123RF)

Gene Technology Outperforms Standard Newborn Screening Tests in Pioneering Study

Since its introduction in the 1960s, newborn screening has grown to encompass dozens of primarily genetic disorders. The standard approach to newborn screening involves detecting specific biomarkers in... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.