We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Gravity-Powered Biomedical Device Paves Way for Low Cost POC Diagnostic Testing

By LabMedica International staff writers
Posted on 14 Jul 2023
Print article
Image: Simple, off-the-shelf, low-cost approach to POC biomedical devices offers advantages over existing platforms (Photo courtesy of Freepik)
Image: Simple, off-the-shelf, low-cost approach to POC biomedical devices offers advantages over existing platforms (Photo courtesy of Freepik)

The need for simple, user-friendly, point-of-care devices continues to exist. Many prototype and market-ready devices aim to simplify diagnosis and crucial biomarker measurement processes using minimal liquid samples, power, and professional knowledge. These innovations aim to enhance healthcare delivery for the vast population residing in low-resource locales, far from well-equipped hospitals and qualified medical personnel. These tests generally share certain prerequisites: they need to transport, combine, and assess minute biological sample-containing droplets and their active ingredients, enabling specific biomarker measurements. High-end devices employ miniature electric pumps to facilitate these reactions, while others leverage the dynamics of liquids within microchannels, or microfluidics, to produce a suction-like effect. Each method comes with its own distinct benefits and challenges. Now, researchers have demonstrated a first-of-its-kind approach that only uses gravity to power point-of-care biomedical devices and also offers certain advantages over currently existing platforms.

Biomedical engineers at Duke University (Durham, NC, USA) have devised a completely new approach for building point-of-care diagnostic tools, which only leverages gravity to transport, mix, and manipulate the liquid droplets involved. This proof-of-concept uses readily available materials and minimal power to interpret results, making it a potentially beneficial option for use in settings with limited resources. The innovative gravity-based technique is based on a selection of nine commercially available surface coatings that can fine-tune the wettability and slipperiness at any given point in the device, thereby controlling how much droplets spread into pancakes or remain spherical, while also influencing their ease of movement down an incline.

By using these surface coatings in smart combinations, all necessary microfluidic elements required for a point-of-care test can be generated. For instance, if a certain location is extremely slippery and a droplet is positioned at a juncture where one side pulls liquid flat and the other pushes it into a ball, it acts like a pump and accelerates the droplet toward the former. The scientists devised numerous elements to manage the motion, interaction, timing, and sequence of multiple droplets within the device. Merging these elements, they fabricated a prototype test to measure human serum lactate dehydrogenase (LDH) levels. They carved channels into the testing platform to create designated routes for droplet passage, each coated with a substance preventing droplets from sticking along the way. Specific points were also pre-treated with dried reagents needed for the test, which are absorbed by droplets of simple buffer solution as they traverse the channels.

The maze-like test is then sealed with a lid equipped with holes for the sample and buffer solution to be dripped in. Once filled, the test is inserted into a box-shaped device with a handle that rotates the test by 90 degrees, allowing gravity to take over. The device also features a simple LED and light detector for swift and easy color-based test result assessment. This enables the scientists to label three different biomarkers with distinct colors for varying tests. In the LDH prototype test, the biomarker is marked with a blue molecule. A basic microcontroller measures the depth of the blue tint and the rate of color change, signifying the quantity and concentration of LDH in the sample, to yield results. This novel demonstration presents a new approach to the development of affordable, low-energy, point-of-care diagnostic devices. While the team intends to further refine their concept, they also hope it will spark interest and lead to the creation of similar tests by other researchers.

“Most microfluidic devices need more than just capillary forces to operate,” said Ashutosh Chilkoti, the Alan L. Kaganov Distinguished Professor of Biomedical Engineering at Duke. “This approach is much simpler and also allows very complex fluid paths to be designed and operated, which is not easy or cheap to do with microfluidics.”

Related Links:
Duke University 

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.