We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics - An LGC Company


Hamamatsu Photonics develops, manufactures and markets optical sensors, photodiodes, photo ICs, image sensors and oth... read more Featured Products: More products

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
06 Feb 2023 - 09 Feb 2023

Infrared Signature for Mobile Phone Detects Malaria

By LabMedica International staff writers
Posted on 13 Dec 2022
Print article
Image: The malaria detection tool collects an infrared signature for a mobile phone to process (Photo courtesy of The University of Queensland)
Image: The malaria detection tool collects an infrared signature for a mobile phone to process (Photo courtesy of The University of Queensland)

Optical microscopy, rapid diagnostic tests (RDTs) and molecular tests are the three main diagnostic techniques currently available for malaria diagnosis. Microscopy is the traditional way of detecting malaria parasites in stained thick or thin peripheral blood films using Giemsa, Wrights or Fields stains.

RDTs detect malaria antigens in blood by targeting falciparum-specific protein such as histidine-rich protein II (HRP-II) or lactate dehydrogenase (LDH). RDTs are simple, relatively cheap and can be used in remote areas without specialized equipment or need for electricity. However, RDTs can only reliably detect 50-100 parasites/ µL. Molecular tests such as polymerase chain reaction (PCR) are currently the most accurate and the most sensitive techniques for detecting malaria in low or sub-microscopic samples, for mixed infections and for differentiating Plasmodium species.

An international team of Tropical Medicine Specialists aided by those at The University of Queensland (Brisbane, Australia) hypothesized that the presence of malaria parasites in red blood cells produce unique infrared signatures that could potentially be used for malaria detection. They used a handheld near infrared spectrometer reflective (NIRS) model to non-invasively collect spectral signatures from the right and left ears, arms and fingers of malaria positive and negative individuals living in a malaria endemic area in Brazil where both P. falciparum and P. vivax are prevalent at a 30%/70% ratio. A total of 60 patients were scanned and a total of 360 spectra were collected. The infection status and Plasmodium species type were confirmed by microscopy and standard PCR.

The scientists uses the NIRvascan NIRS model G1 (Allied Scientific Pro, Gatineau, QC . Canada). The model used is a diffuse reflectance spectrometer with wavelength ranging from 900-1700nm, a 5000:1 signal to noise ratio and an optical resolution of 10nm pixel resolution. It has an inGaAs detector (Hamamatsu Photonics, Herrsching Germany), and it weighs 136g and measures 82.2 × 63× 40 mm, it is rechargeable and can be operated by either a computer or a smart-phone via Bluetooth.

The investigators reported that results from PCR confirmed 27/60 (45%) people scanned were positive with malaria while the rest were malaria negative. Of the malaria positive individuals, 75% (N=20) and 25% (N=7), were infected with P. vivax and P. falciparum, respectively. Results from microscopy indicated that out of the 27 infected patients, 7.4% (two subjects) had extremely high parasitaemia, 18.5% (five subjects) had moderate parasitaemia, 44.4% (12 subjects) had low parasitaemia and 29.6% (eight subjects) had very low parasitaemia.

Spectra collected from the ear produced the most accurate prediction of infection in the independent subjects with an accuracy of 92% (N=24), sensitivity of 100% (N=11) and specificity of 85% (N=13). Comparatively, the accuracy, sensitivity and specificity of the spectra collected from the finger was 70% (N=24), 72 (N=11) and 69% (N=13), respectively whereas spectra of the arm resulted into a predictive accuracy of 72% (N=24), sensitivity of 59% (N=11) and specificity of 85% (N=13).

The authors concluded that their proof-of-concept study provides insights on the potential application of NIRS and machine learning techniques for rapid, non-invasive and large-scale surveillance of malaria and potentially other human pathogens. The study was published on December 7, 2022 in the journal PNAS Nexus.

Related Links:
The University of Queensland 
Allied Scientific Pro
Hamamatsu Photonics

Gold Supplier
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
RSV & FLU A/B One-Step Immunochromatographic Test
Auto Mass Spectrometry Microbial Identification System
Microbe LW MS-5000
Clinical Centrifuge
BenchMate C6V

Print article


Molecular Diagnostics

view channel
Image: The new blood test measures stress hormone levels after heart attacks (Photo courtesy of University of Oxford)

New Blood Test Could Ensure Timely Life-Saving Treatment of Heart Attack Victims

Cardiovascular disease, one of the leading causes of death, generally manifests itself through heart attacks. Most patients with very large heart attacks are treated using an emergency procedure called... Read more


view channel
Image: Scientists have won USD 9.5 million to study emerging pathogens (Photo courtesy of Pexels)

Study of Emerging Pathogens to Better Understand Influenza-Antibody Interactions Could Improve Diagnostics

Outbreaks of Avian influenza have occurred around the world for over a century. The highly pathogenic H5N1 virus which was first identified in 1996 can lead to severe disease and has a high fatality rate... Read more


view channel
Image: Flexible copper sensor made cheaply from ordinary materials (Photo courtesy of University of São Paulo)

Low-Cost Portable Sensor Detects Heavy Metals in Sweat

Heavy metals like lead and cadmium can be found in batteries, cosmetics, food and many other things that have become a part of daily life. However, they become toxic if they accumulate in the human body... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.