We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics - An LGC Company

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
01 Mar 2023 - 03 Mar 2023

Haematology Analyzer Prototype Tested for Field Malaria Surveillance

By LabMedica International staff writers
Posted on 15 Sep 2022
Print article
Image: The XN-31 hematology analyzer on which the prototype for malaria detection was based (Photo courtesy of Sysmex Corporation)
Image: The XN-31 hematology analyzer on which the prototype for malaria detection was based (Photo courtesy of Sysmex Corporation)

Simple and accurate diagnosis is a key component of malaria control programmes. Microscopy is the current gold standard, however it requires extensive training and the results largely rely on the skill of the microscopists.

Malaria rapid diagnostic tests (RDT) can be performed with minimal training and offer timely diagnosis, but results are not quantitative. Moreover, some Plasmodium falciparum parasites have evolved and can no longer be detected by existing RDT. Malaria kills about 500,000 people a year worldwide, and 90% of these deaths are in tropical Africa.

A team of Medical Scientists at the Osaka Metropolitan University (Osaka, Japan) working with their Kenyan counterparts conducted an observational cross-sectional study to compare the effects of blood sampling methods (venous versus capillary) and sample storage temperature and length on the performance of a prototype hematology analyzer in the detection of Plasmodium infections. Of 171 subjects enrolled in this study, 169 provided both venous and capillary blood samples for evaluation.

Capillary blood was used to prepare thick and thin blood smears for microscopic examination, and for RDT diagnosis using the SD Bioline Malaria Ag Pf/Pv RDT (Standard Diagnostics Inc., Gyeonggi-do, South Korea). Immediately after sampling, both capillary and venous blood samples were directly analyzed on the prototype XN-31p automated hematology analyzer (Sysmex Corporation, Kobe, Japan) using the low malaria (LM) mode. In LM mode, approximately 130 µL of blood is needed, although only 60 µL of the sample is used for analysis. For PCR diagnosis, DNA was extracted from a quartered blood spot (17.5 µL) using the QIAamp Blood Mini Kit (Qiagen, Hilden, Germany). PCR amplification of the Plasmodium mitochondrial cytochrome c oxidase III (cox3) gene was performed.

The scientists reported that the XN-31p, microscopy, RDT, and PCR detected 18, 16, 18, and 23 Plasmodium infections, respectively. One Plasmodium malariae infection was detected by microscopy while three Plasmodium ovale and one mixed infection of P. falciparum and P. malariae were detected by PCR. On the XN-31p, Plasmodium infections were detected in the same set of 18 samples using both capillary and venous blood; all were identified as P. falciparum except in one capillary blood sample where the species could not be specified.

Relative to PCR, the sensitivity and specificity of the XN-31p with capillary blood samples were 0.857 and 1.000, respectively. Short-term storage of capillary blood samples at chilled temperatures had no adverse impact on parasitaemia and complete blood counts (CBC) measured by the XN-31p.

The authors concluded that their study showed that in lieu of venous blood, capillary blood can be used directly without any pre-treatment or dilution for malaria diagnosis on the XN-31p automated hematology analyzer. Moreover, capillary blood can be stored at chilled temperature for up to 24 hours without adversely affecting malaria diagnostic and CBC results, broadening the appeal to utilize the XN-31p in a hub and spoke model as a rapid and accurate malaria diagnostic method for mass surveys and case confirmation in remote locations. The study was published on September 1, 2022 in the Malaria Journal.

Related Links:
Osaka Metropolitan University 
Standard Diagnostics Inc 
Sysmex Corporation 
Qiagen 

Gold Supplier
Group A Streptococcus Antigen Test
OSOM Strep A Test
New
Safety Lancet
Unistik Pro
New
RSV & FLU A/B One-Step Immunochromatographic Test
SIMPLE RSV-FLU A+B
New
Auto 3-Part Diff Hematology Analyzer
Celltac Alpha+ MEK-1303K

Print article
MEDLAB - INFORMA

Channels

Immunology

view channel
Image: Scientists have won USD 9.5 million to study emerging pathogens (Photo courtesy of Pexels)

Study of Emerging Pathogens to Better Understand Influenza-Antibody Interactions Could Improve Diagnostics

Outbreaks of Avian influenza have occurred around the world for over a century. The highly pathogenic H5N1 virus which was first identified in 1996 can lead to severe disease and has a high fatality rate... Read more

Technology

view channel
Image: Flexible copper sensor made cheaply from ordinary materials (Photo courtesy of University of São Paulo)

Low-Cost Portable Sensor Detects Heavy Metals in Sweat

Heavy metals like lead and cadmium can be found in batteries, cosmetics, food and many other things that have become a part of daily life. However, they become toxic if they accumulate in the human body... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.