We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

RNA Sequencing Improves Gene Fusion Detection for Childhood Cancer Diagnostics

By LabMedica International staff writers
Posted on 07 Feb 2022
Print article
Image: Gene fusions play a key role in the formation and spread of nearly 20% of all human cancers. This schematic shows the ways a fusion gene can occur at a chromosomal level (Photo courtesy of Wikimedia Commons)
Image: Gene fusions play a key role in the formation and spread of nearly 20% of all human cancers. This schematic shows the ways a fusion gene can occur at a chromosomal level (Photo courtesy of Wikimedia Commons)

Analysis of whole tumor RNA in children with cancer significantly increases the detection of gene fusions, which can provide information concerning the exact cancer type, the aggressiveness of the tumor, and the possible benefit of targeted drugs.

Chromosomal rearrangements in the genomes of tumor cells can lead to the formation of chimeric transcripts or gene fusions. It is estimated that gene fusions play a key role in the tumorigenesis and metastasis in 20% of all human cancers. Within pediatric oncology, hematologic cancers and sarcomas are characterized by numerous potential fusions. Thus, detecting gene fusions is crucial for accurate diagnosis, prognosis, and determining therapeutic targets.

Toward this end, investigators at the Princess Máxima Center for Pediatric Oncology (Utrecht, the Netherlands) first performed RNA sequencing on a validation cohort of 24 samples with a known gene fusion event, after which a prospective pan-pediatric cancer cohort of 244 samples was tested by RNA sequencing in parallel to existing diagnostic procedures. This cohort included hematologic malignancies, tumors of the CNS, solid tumors, and suspected neoplastic samples.

This wide-ranging survey was made possible by the opening of the Princess Máxima Center for pediatric oncology in 2018. This research hospital is where all children with cancer in the Netherlands are treated.

The investigators identified a clinically relevant gene fusion in 83 of 244 cases in the prospective cohort. Sixty fusions were detected by both routine diagnostic techniques and RNA sequencing, and one fusion was detected only in routine diagnostics, but an additional 24 fusions were detected solely by RNA sequencing. RNA sequencing, therefore, increased the diagnostic yield by 38%-39%. In addition, RNA sequencing identified both gene partners involved in the gene fusion, in contrast to most routine techniques.

Senior author Dr. Bastiaan Tops, head of the diagnostic laboratory at the Princess Máxima Center for Pediatric Oncology, said, “RNA sequencing was already used before, but only in children who were very ill, and for whom standard treatment had stopped working. In our research hospital setting at the Princess Máxima Center, we have implemented RNA sequencing into standard diagnostics. Our new study shows that this approach is paying off. Because we can look at the full genetic landscape of a child’s tumor at diagnosis, we can discuss possible consequences for treatment with the child’s doctor right away. That means we can offer children with cancer the very best opportunities, based on the latest scientific insights.”

The study was publislhed in the January 27, 2022, online edition of the journal JCO Precision Oncology.

Related Links:
Princess Máxima Center for Pediatric Oncology 

 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.