We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Microfluidic Device Isolates Circulating Tumor Cell Clusters

By LabMedica International staff writers
Posted on 03 Jul 2019
Print article
Image: (A and B) Photomicrographs of the layers of the device; (C) the mold ready for casting and (D) the chip mounted on a slide (Photo courtesy of San Diego State University).
Image: (A and B) Photomicrographs of the layers of the device; (C) the mold ready for casting and (D) the chip mounted on a slide (Photo courtesy of San Diego State University).
The three main challenges of cancer treatment are metastases, recurrence, and acquired therapy resistance. These challenges have been closely linked to circulating cancer cell clusters.

About 90% of cancer deaths are due to metastases, when tumors spread to other vital organs, and it has recently been realized that it's not individual cells but rather distinct clusters of cancer cells that circulate and metastasize to other organs.

A team of scientists led by San Diego State University (San Diego, CA, USA) has shown how a well-known passive micromixer design (staggered herringbone mixer - SHM) can be optimized to induce maximum chaotic advection within antibody-coated channels of dimensions appropriate for the capture of cancer cell clusters. The device’s principle design configuration is called: Single-Walled Staggered Herringbone (SWaSH).

The design of the device makes use of 32 channels, each of 200 μm width and 100 μm spacing, which will increase the available chip surface to cross-sectional area by approximately 1.4-fold. Numerous simulations were performed by varying different properties of the HB pattern, such as channel configuration, and flow velocities to optimize for our deterministic factor cell-to-surface interactions. The Cy5-labeled streptavidin was utilized to visualize the cross-linked and functionalized alginate hydrogel coating within the micro channels. Images were captured using a fluorescence Zeiss 200M microscope.

Peter Teriete, PhD, an assistant professor and co-author of the study, said, “Our device's channel design had to generate microfluidic flow characteristics suitable to facilitate cell capture via antibodies within the coated channels. So we introduced microfeatures, herringbone recesses, to produce the desired functionality. We also developed a unique alginate hydrogel coating that can be readily arrayed with antibodies or other biomolecules. By connecting bioengineering with materials science and basic cancer biology, we were able to develop a device and prove that it performs as desired.” The study was published on June 18, 2019, in the journal AIP Advances.

Related Links:
San Diego State University

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
PSA Test
Humasis PSA Card
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.