We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Portable Device Developed for Early-Stage Malaria Detection

By LabMedica International staff writers
Posted on 13 Jun 2018
Over 216 million people were infected with malaria in 2016, and 445,000 individuals died from the disease. More...
The key to solving this health crisis is early-stage diagnosis when malaria therapeutics are most effective.

There are two standard ways of diagnosing malaria, yet both have limitations. The first involves taking a blood sample from a person and looking at it underneath a microscope for red blood cells that have been infected with the malaria parasite. Another method are the rapid diagnostic tests.

Bioengineers at the University of Southern California (Los Angeles, CA, USA) have developed a portable, magneto-optic technology for early stage malaria diagnosis based on the detection of the malaria pigment, hemozoin. The portable optical diagnostics system (PODS) prototype detects a byproduct generated by all species of the malaria parasite, as such; it is a rapid screening for all malaria strains. Because the amount of hemozoin in the blood is directly related to how far the malaria infection has progressed, it is an ideal indicator of infection.

By applying a magnet, it is possible to manipulate and move the hemozoin particles within a test tube around, or move them in and out of the laser beam. In this way, a single sample can be used to perform two measurements, and every diagnosis is personalized. If hemozoin is present, even in minute concentrations, the signals change. On average, it takes between 10 to 15 minutes for the signal to stabilize, and a larger difference between the two measurements indicates that the malaria has progressed farther. The scientists used β-hematin, a hemozoin mimic, and they demonstrated detection limits of less than 0.0081 μg/mL in 500 μL of whole rabbit blood with no additional reagents required. This level corresponds to less than 26 parasites/μL, a full order of magnitude below clinical relevance and comparable to or less than existing technologies.

Andrea Martin Armani, PhD, a professor of Chemical Engineering and Materials Science, and senior author of the study, said, “Malaria primarily impacts low-resource environments where supply chain management is difficult and access to power can be unreliable. Therefore, an effective malaria diagnostic must be independent of these.” The study was published on May 21, 2018, in the journal ACS Sensors.

Related Links:
University of Southern California


Gold Member
Automatic Hematology Analyzer
DH-800 Series
Collection and Transport System
PurSafe Plus®
New
Gold Member
Hybrid Pipette
SWITCH
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: When assessing the same lung biopsy sample, research shows that only 18% of pathologists will agree on a TCMR diagnosis (Photo courtesy of Thermo Fisher)

Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection

Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.