We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Smartphone-Based ELISA Developed for Blood Antigens

By LabMedica International staff writers
Posted on 14 Aug 2017
A novel high speed, lab-on-a-chip ELISA test for antigens in blood samples depends on a unique nonstick polymer coating that eliminates the need for multiple incubation and washing steps.

Investigators at Duke University (Durham, NC, USA) used an ink-jet printer to spray an array of antibodies onto glass slides treated with a unique nonstick polymer brush coating. More...
The coating functioned like Teflon to prevent non-target proteins from attaching to the surface of the slide and causing high levels of background "noise".

The investigators "D4 assay" utilized a matched pair of antibodies to detect and capture a target protein in a blood sample. The fixed array on the slide comprised immobilized capture antibodies and soluble detection antibodies, which were labeled with a fluorescent marker to allow quantitation of the antigen (if present). Placing a drop of blood on the slide caused the detection antibodies to dissolve, separate from the array, and bind to target proteins in the sample. The fluorescing antibody-antigen pairs then attached to the capture antibodies on the slide. A buffer solution was used to remove any proteins not bound to the slide's nonstick polymer brush coating. Assay results were read with a smartphone based detector system.

As a proof-of-concept for the accuracy of the assay, the investigators measured the levels of leptin in patients' serum with the D4 assay and compared them to those obtained with a clinical ELISA platform. This study found that the results from the D4 assay were on par with those from the ELISA test.

"The real significance of the assay is the polymer brush coating," said senior author Dr. Ashutosh Chilkoti, professor of biomedical engineering at Duke University. "The polymer brush allowed us to store all of the tools we need on the chip while maintaining a simple design."

The D4 system was discussed in detail in the August 7, 2017, online edition of the Proceedings of the [U.S.] National Academy of Sciences.

Related Links:
Duke University


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Automatic Hematology Analyzer
DH-800 Series
New
Automated Biochemical Analyzer
iBC 900
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.