We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Inexpensive Diagnostic Device May Revolutionize Medical Care

By LabMedica International staff writers
Posted on 28 Feb 2017
A radically designed “lab on a chip” diagnostic device is expected to dramatically reduce the cost of isolating and characterizing rare cells and molecules, a process that is of critical importance in diagnosis of common lethal diseases such as malaria, tuberculosis, HIV, and cancer.

Point-of-care diagnostics in the developing world and resource-limited areas require numerous special design considerations to provide effective early detection of disease. More...
Of particular need for these contexts are diagnostic technologies featuring low costs, ease of use, and broad applicability. Investigators at Stanford University recently described a nanoparticle-inkjet-printable microfluidics-based platform that fulfilled these criteria and that is expected to significantly reduce the footprint, complexity, and cost of clinical diagnostics. This reusable 0.01 USD device is miniaturized to handle small sample volumes and can perform numerous analyses.

The device is a combination of microfluidics, electronics, and inkjet printing technology. It is in essence a two-part system: a clear silicone microfluidic chamber for housing cells resting on top of a reusable electronic strip. A regular inkjet printer was used to print the electronic strip onto a flexible sheet of polyester using commercially available conductive nanoparticle ink.

The device, which separates cells based on their size and intrinsic electrical properties, can perform label-free and rapid single-cell capture, efficient cellular manipulation, rare-cell isolation and selective analytical separation of biological species, sorting, concentration, positioning, enumeration, and characterization. The miniaturized format allows for small sample and reagent volumes. By keeping the electronics separate from microfluidic chips, the former can be reused and device lifetime is extended.

The process of manufacturing the device is significantly less expensive, time-consuming, and complex than traditional lab-on-a-chip platforms, requiring only an inkjet printer rather than skilled personnel and clean-room facilities. Production requires only about 20 minutes (versus up to weeks) and one US cent - an unprecedented cost in in clinical diagnostics.

“The genome project has changed the way an awful lot of medicine is done, and we want to continue that with all sorts of other technology that are just really inexpensive and accessible,” said senior author Dr. Ronald W. Davis, professor of biochemistry and genetics at Stanford University. “The motivation was really how to export technology and how to decrease the cost of things.”

A study describing the technology was published in the February 6, 2017, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences.


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gel Cards
DG Gel Cards
Automatic CLIA Analyzer
Shine i9000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The test utilizes mtDNA biomarkers to detect molecular signatures associated with endometriosis (Photo courtesy of Shutterstock)

Endometriosis Blood Test Could Replace Invasive Laparoscopic Diagnosis

Endometriosis affects an estimated 1 in 10 women globally, yet diagnosis can take 7 to 10 years on average due to the invasive nature of laparoscopy and lack of accurate, non-invasive tests.... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.