We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Cancer DNA Biomarkers Detected by Lab-On-A-Chip Technique

By LabMedica International staff writers
Posted on 28 Dec 2016
Miniaturized lab-on-chip approaches are prime candidates for developing viable diagnostic tests and instruments because they are small, need only limited test volumes, and can be cost-effective.

Cancer is the second leading cause of death in the USA, making early, reliable diagnosis and treatment a priority for doctors. More...
Genomic biomarkers offer great potential for diagnostics and new forms of treatment, such as immunotherapy.

A team of scientists and engineers from the University of California, Santa Cruz (CA, USA) and Brigham Young University (Provo, UT, USA) developed an optofluidic analysis system that processes biomolecular samples starting from whole blood and then analyzes and identifies multiple targets on a silicon-based molecular detection platform. Instead of transferring relatively large (micro- to milliliters) samples between test tubes or using bulky analytical equipment, samples and reagents are handled on chip-scale devices with fluidic microchannels. This requires much smaller test volumes, and multiple functions can be integrated on a single device, improving speed, reliability and portability of these laboratory processes.

The scientists demonstrated blood filtration, sample extraction, target enrichment, and fluorescent labeling using programmable microfluidic circuits. They detected and identified multiple targets using a spectral multiplexing technique based on wavelength-dependent multi-spot excitation on an antiresonant reflecting optical waveguide chip. Specifically, they extracted two types of melanoma biomarkers, mutated cell-free nucleic acids, BRAFV600E and NRAS, from whole blood. They detected and identified these two targets simultaneously using the spectral multiplexing approach with up to a 96% success rate.

Holger Schmidt, PhD, a professor of electrical engineering and senior author of the study, said, “Our approach uses optofluidic chips where both fluid processing and optical sensing are done on a chip, allowing for further miniaturization and performance enhancements of the chip system. In the near term, we hope to build new diagnostic instruments for molecular diagnostics with applications in oncology and infectious disease detection, both viruses and (drug-resistant) bacteria.” The study was published in the December 2016 issue of the journal Biomicrofluidics.

Related Links:
University of California, Santa Cruz
Brigham Young University

New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Luteinizing Hormone Assay
DRG LH-Serum ELISA Kit
New
Unstirred Waterbath
HumAqua 5
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: Schematic diagram of multimodal single-cell MSI using tapping-mode scanning probe electrospray ionization (Photo courtesy of Yoichi Otsuka)

New Technology Improves Understanding of Complex Biological Samples

Tissues are composed of a complex mixture of various cell types, which complicates our understanding of their biological roles and the study of diseases. Now, a multi-institutional team of researchers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.