We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




DNA-Based Platform Detects Traces of Molecules from Broad Range of Sources

By LabMedica International staff writers
Posted on 19 Jul 2016
Researchers have harnessed synthetic DNA technology to develop a super-efficient nanomachine that detects trace amounts of substances that range from viruses and bacteria to cocaine and metals.

"It's a completely new platform that can be adapted to many kinds of uses," said co-author John Brennan, director of Biointerfaces Insitute, McMaster University (Hamilton, Ontario, Canada), "These DNA nano-architectures are adaptable, so that any target should be detectable." Besides being life’s genetic material, DNA is also a very programmable molecule that lends itself to engineering for synthetic applications. More...
The new method shapes separately programmed pieces of DNA material into pairs of interlocking circles. The first remains inactive until it is released by the second, like a bicycle wheel in a lock. When the second circle, acting as the lock, is exposed to even a trace of the target substance, it opens, freeing the first circle of DNA, which replicates quickly and creates a signal, such as a color change.

"The key is that it's selectively triggered by whatever we want to detect," said Prof. Brennan, "We have essentially taken a piece of DNA and forced it to do something it was never designed to do. We can design the lock to be specific to a certain key. All the parts are made of DNA, and ultimately that key is defined by how we build it."

The idea came from nature itself, explained co-author Yingfu Li, who holds the Canada Research Chair in Nucleic Acids Research, "Biology uses all kinds of nanoscale molecular machines to achieve important functions in cells," said Prof. Li, "For the first time, we have designed a DNA-based nanomachine that is capable of achieving ultra-sensitive detection of a bacterial pathogen." The DNA-based nanomachine is being further developed into a user-friendly detection kit that will enable rapid testing of a variety of substances, and could move to clinical testing within a year.

The study, by Liu M et al, was published June 23, 2016, in the journal Nature Communications.

Related Links:
McMaster University



Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Creatine Kinase-MB Assay
CK-MB Test
New
Cytomegalovirus Real-Time PCR Test
Quanty CMV Virus System
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: Schematic diagram of multimodal single-cell MSI using tapping-mode scanning probe electrospray ionization (Photo courtesy of Yoichi Otsuka)

New Technology Improves Understanding of Complex Biological Samples

Tissues are composed of a complex mixture of various cell types, which complicates our understanding of their biological roles and the study of diseases. Now, a multi-institutional team of researchers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.