We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

AI Image Analysis Module Detects Cancers at the Time of Surgery

By LabMedica International staff writers
Posted on 26 May 2022
Print article
Image: NIO Laser Imaging System (Photo courtesy of Invenio Imaging)
Image: NIO Laser Imaging System (Photo courtesy of Invenio Imaging)

A new image analysis module based on deep learning allows neurosurgeons to identify areas of cancer infiltration in patients undergoing primary treatment of a diffuse glioma, providing cancer detection where they really need it and dramatically improving brain tumor surgery.

Invenio Imaging Inc.’s (Santa Clara, CA, USA) NIO Laser Imaging System uses Stimulated Raman Histology to image unprocessed tissue specimen without sectioning or staining, enabling histologic evaluation outside the laboratory. It has been used in over 2000 brain tumor procedures across multiple institutions in the US and in Europe. SRH allows three-dimensional imaging of thick specimens using optical sectioning and relies on laser spectroscopy to interrogate the chemical composition of the sample. As such, it does not require physical sectioning, (e.g. with a microtome on frozen or paraffin-embedded tissue) or dye staining, and it allows optical imaging of fresh tissue specimens with minimal tissue preparation.

In contrast to other laser spectroscopy techniques, SRH is unique in that it performs a spectroscopic measurement at each pixel and displays the results as a pseudo-color image, instead of a point spectrum. The NIO Laser Imaging System uses a high numerical aperture objective with 25x magnification and a 0.5mm scan width. Larger areas up to 10mm x 10mm can then be acquired by stitching multiple fields of view in a fully automated process. NIO images are natively digital and can be shared with existing IT infrastructure via a vendor-neutral DICOM interface. The NIO Glioma Reveal image analysis module now adds immediate decision support to the NIO Laser Imaging System by allowing the imaging of multiple samples from the resection cavity. Invenio has received the CE Mark for the NIO Glioma Reveal image analysis module, allowing neurosurgeons in the EU to use it to inform intraoperative decisions.

"By streamlining intraoperative tissue imaging, the NIO Laser Imaging System allows the imaging of multiple samples from the resection cavity. The NIO Glioma Reveal image analysis module now adds immediate decision support", said Chris Freudiger, PhD, co-founder and CTO of Invenio Imaging.

"Glioma Reveal provides cancer detection where we really need it, dramatically improving brain tumor surgery," added Prof. Dr. Jürgen Beck, Chair of Neurosurgery at the University of Freiburg.

"Applying reliable artificial intelligence to digital pathology appears to me, as a surgeon, to be the missing piece in the puzzle of rapid intraoperative histology-based decision-making," said Asst. Prof. Dr. Volker Neuschmelting, Vice-Chair of Neurosurgery at the University of Cologne.

"The NIO Laser Imaging System can also be combined with other important imaging techniques such as 5-ALA fluorescence to further improve brain tumor detection during surgery," explained Prof. Dr. Georg Widhalm, neurosurgeon at the University of Vienna.

Related Links:
Invenio Imaging Inc.

Automated ELISA-IFA-BLOT Processor AP 22
New
Gold Supplier
Monkeypox Virus (MPV) Detection Kit (PCR Fluorescence Probing)
Monkeypox Virus (MPV) Detection Kit
New
Multiple Channel Electronic Pipette
MPB Series
New
ELISA & CLIA Analyzer
Autoplex Gen2

Print article

Channels

Molecular Diagnostics

view channel
Image: A new machine rapidly and robustly separates cancer cells from blood samples (Photo courtesy of DGIST)

Centrifugal System for Separating Circulating Tumor Cells from Blood Samples to Improve Cancer Diagnosis

Circulating tumor cells are cells that break off from cancers and are released into the blood stream. They can go on to form the seeds for new tumor formation in other parts of the body, known as metastases.... Read more

Industry

view channel
Image: Fujirebio has acquired ADx NeuroSciences for 40 million Euros (Photo courtesy of Pexels)

Fujirebio Acquires ADx NeuroSciences to Speed Development of Neurodegenerative Diseases Diagnostic Tests

Fujirebio Holdings, Inc. (Tokyo, Japan) has announced the acquisition of ADx NeuroSciences (Gent, Belgium) for EUR 40 million in a deal that is expected to close in July 2022, pending the satisfaction... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.