We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Somatic Evolution Identified in Non-Neoplastic IBD-Affected Colon

By LabMedica International staff writers
Posted on 06 Aug 2020
Print article
Image: The NovaSeq 6000 Sequencing System offers high-throughput sequencing across a broad range of applications (Photo courtesy of Illumina).
Image: The NovaSeq 6000 Sequencing System offers high-throughput sequencing across a broad range of applications (Photo courtesy of Illumina).
Inflammatory bowel disease (IBD) is a debilitating disease characterized by repeated flares of intestinal inflammation. The two major subtypes of IBD, Crohn’s disease (CD) and ulcerative colitis (UC) are distinguished by the location, continuity, and nature of the inflammatory lesions.

UC affects only the large intestine, spreading continuously from the distal to proximal colon, whereas CD most commonly affects the small and large intestine and is characterized by discontinuous bouts of inflammation. In addition to the significant morbidity associated with the disease, IBD patients have a 1.7-fold increased risk of developing gastrointestinal cancers compared to the general population.

A large team of scientists led by the Wellcome Sanger Institute (Hinxton, UK) whole-genome sequenced 446 colonic crypts from 46 IBD patients and compared these to 412 crypts from 41 non-IBD controls from a previous publication on the mutation landscape of the normal colon. Samples from the first 19 patients were whole genome sequenced on XTEN machines (Illumina, San Diego, CA, USA) and samples from other patients were whole genome sequenced on Illumina Htp NovaSeq 6000. Base substitution calling was carried out in four steps: Discovery, filtering of the discovery set, genotyping and filtering of the genotypes. Mutations were first called using the Cancer Variants through Expectation Maximization (CaVEMan) algorithm.

The investigators analyzed mutations in the colonic crypts in combination with information on IBD patients' age, the location of the tissue samples biopsied from the gut, and the extent of disease. Their search highlighted non-synonymous alterations affecting genes such as ARID1A, FBXW7, PIGR, ZC3H12A, and genes from the interleukin 17 and the Toll-like receptor pathways. Along with more extensive clonal expansions involving somatic mutations in samples from the IBD-affected individuals, the team noted that mutations tended to occur in genes that appear to be subject to positive selection in individuals with IBD.

Peter Campbell, MD, PhD, Head of Cancer Genetics and Genomics and co-senior author of the study, said, “These approaches have given us unique insights into the effects of inflammatory bowel disease on the DNA sequence of the inflamed tissue. The findings point to the possibility of using somatic alteration clues to understand IBD and other common diseases beyond cancer. It is exciting to see the methods that we and others have used to understand cancers now being applied to other common diseases.” The study was published on July 21, 2020 in the journal Cell.

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
HbA1c Test
HbA1c Rapid Test
New
Epstein-Barr Virus Test
Mononucleosis Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.