We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Tumor Cells in Blood Samples Predict Prostate Cancer Spread

By LabMedica International staff writers
Posted on 25 Nov 2016
Print article
Image: The Parsortix system uses a patented micro-fluidic technology in the form of a disposable cassette to capture and then harvest circulating tumor cells (CTCs) from blood (Photo courtesy of ANGLE).
Image: The Parsortix system uses a patented micro-fluidic technology in the form of a disposable cassette to capture and then harvest circulating tumor cells (CTCs) from blood (Photo courtesy of ANGLE).
A group of circulating tumor cells (CTC) in prostate cancer patient blood samples has been found which are linked to the spread of the disease and this is the first time these cell types have been shown to be a promising marker for prostate cancer spread.

There are around 46,500 new cases of prostate cancer each year in the UK, and around 11,000 people die from the disease each year. Epithelial to mesenchymal transition (EMT) is a critical step for tumor metastasis and in prostate cancer; circulating cells expressing the mesenchymal marker Vimentin (VIM) are cancer cells.

Scientists at the Barts Cancer Institute (London, UK) studied 81 samples from men with prostate cancer, comprising 38 untreated and 43 progressive diseases, and looked for cells that were gaining the ability to migrate and invade through the body. They optimized the Parsortix size and deformability-based platform (ANGLE, Plc, Guilford, UK) for the isolation of CTCs with both epithelial and mesenchymal properties and developed a multiple fluorescence in situ hybridization (FISH) rehybridization method to analyze multiple genomic changes on the CTCs after immunofluorescence signals were completely stripped.

The team analyzed several genomic regions, and detected genomic alterations in a similar proportion of CK+ and VIM+ groups of CD45- circulating cells. These genomic aberration results indicate that majority of VIM+/CD45- cells are circulating prostate cancer cells with EMT. Among the CTC types, the number of EMTing CTCs correlated the best with the presence of metastases and high risk localized disease and had a closest area under the ROC curve (AUC) to prostate specific antigen (PSA) level for distinguishing patients with detectable metastases.

The authors of the study concluded that they had developed a novel CTC detection and genomic analysis approach, which can efficiently analyze CTCs undergoing/undergone EMT. This greatly enhances our ability to investigate cancer metastasis process and to predict/monitor cancer progression using CTCs. Yong-Jie Lu, MD, PhD, the lead author said, “Our study shows that the number of these specific cells in a patient's sample is a good indicator of prostate cancer spreading. By identifying these cells, which have gained the ability to move through the body, we have found a potential new way to monitor the disease.” The study was presented at the National Cancer Research Institute Cancer Conference held in Liverpool, UK.

Related Links:
Barts Cancer Institute
ANGLE
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.