We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Tumor Cells in Blood Samples Predict Prostate Cancer Spread

By LabMedica International staff writers
Posted on 25 Nov 2016
A group of circulating tumor cells (CTC) in prostate cancer patient blood samples has been found which are linked to the spread of the disease and this is the first time these cell types have been shown to be a promising marker for prostate cancer spread.

There are around 46,500 new cases of prostate cancer each year in the UK, and around 11,000 people die from the disease each year. More...
Epithelial to mesenchymal transition (EMT) is a critical step for tumor metastasis and in prostate cancer; circulating cells expressing the mesenchymal marker Vimentin (VIM) are cancer cells.

Scientists at the Barts Cancer Institute (London, UK) studied 81 samples from men with prostate cancer, comprising 38 untreated and 43 progressive diseases, and looked for cells that were gaining the ability to migrate and invade through the body. They optimized the Parsortix size and deformability-based platform (ANGLE, Plc, Guilford, UK) for the isolation of CTCs with both epithelial and mesenchymal properties and developed a multiple fluorescence in situ hybridization (FISH) rehybridization method to analyze multiple genomic changes on the CTCs after immunofluorescence signals were completely stripped.

The team analyzed several genomic regions, and detected genomic alterations in a similar proportion of CK+ and VIM+ groups of CD45- circulating cells. These genomic aberration results indicate that majority of VIM+/CD45- cells are circulating prostate cancer cells with EMT. Among the CTC types, the number of EMTing CTCs correlated the best with the presence of metastases and high risk localized disease and had a closest area under the ROC curve (AUC) to prostate specific antigen (PSA) level for distinguishing patients with detectable metastases.

The authors of the study concluded that they had developed a novel CTC detection and genomic analysis approach, which can efficiently analyze CTCs undergoing/undergone EMT. This greatly enhances our ability to investigate cancer metastasis process and to predict/monitor cancer progression using CTCs. Yong-Jie Lu, MD, PhD, the lead author said, “Our study shows that the number of these specific cells in a patient's sample is a good indicator of prostate cancer spreading. By identifying these cells, which have gained the ability to move through the body, we have found a potential new way to monitor the disease.” The study was presented at the National Cancer Research Institute Cancer Conference held in Liverpool, UK.

Related Links:
Barts Cancer Institute
ANGLE

Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Clinical Chemistry System
P780
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The liquid biopsy approach measures randomness in DNA methylation patterns to detect early-stage cancer signals in blood (Photo courtesy of 123RF)

Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability

Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.