We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Tumor Analysis Method Identifies High-Risk Prostate Cancer

By LabMedica International staff writers
Posted on 21 Sep 2016
A new way to identify which prostate cancer patients are likely to develop aggressive types of the disease, even if their tumors at first appear to be lower risk, has been created.

Prostate cancer is a biologically heterogeneous disease with variable molecular alterations underlying cancer initiation and progression. More...
Despite recent advances in understanding prostate cancer heterogeneity, better methods for classification of prostate cancer are still needed to improve prognostic accuracy and therapeutic outcomes.

A team of scientists led by those at Cedars-Sinai Medical Center (Los Angeles, CA, USA) computationally assembled a large virtual cohort of human prostate cancer transcriptome profiles from 38 distinct cohorts and, using pathway activation signatures of known relevance to prostate cancer, developed a novel classification system consisting of three distinct subtypes (named PCS1–3). They validated this subtyping scheme in 10 independent patient cohorts and 19 laboratory models of prostate cancer, including cell lines and genetically engineered mouse models.

The team found showed that one of the three subtypes of prostate cancer they identified, which they called PCS1, was generally aggressive. In the patients they studied, this subtype showed a high likelihood of spreading and progressing to poor clinical outcomes, including fatalities. Patients experienced poor outcomes even when the tumors had been assigned low Gleason grades. The two other subtypes, PCS2 and PCS3, progressed more slowly. Currently, patients with low-grade tumors often receive no treatment and instead are closely monitored, under a strategy known as active surveillance. The new study indicates active surveillance may not be enough for some of these patients.

An additional advantage to the new subtyping is that it can be performed on tumor cells circulating in the blood. This finding has the potential to improve real-time monitoring of tumor evolution during treatment. Michael Freeman, PhD, the study’s principal investigator said, “About 60% of prostate cancer patients we treat won't progress to aggressive cancer. The problem was that we didn't have a way of knowing which patients fall into that 60%. We hope our findings help physicians provide more patients with optimal treatments, resulting in healthier outcomes.” The study was published on September 1, 2016, in the journal Cancer Research.

Related Links:
Cedars-Sinai Medical Center


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Biochemistry Analyzer
Chemi+ 8100
New
STI Test
REALQUALITY RQ-SevenSTI
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: Ear wax could be a possible screening medium for Parkinson’s disease (Photo courtesy of 123RF)

Earwax Test Accurately Detects Parkinson’s by Identifying Odor Molecules

Current tests for Parkinson’s disease (PD) rely heavily on clinical scales and neuroimaging, which are often subjective, expensive, and ill-suited for routine screening. Since most treatments only slow... Read more

Molecular Diagnostics

view channel
Image: A family of molecules could help diagnose and treat breast cancer (Photo courtesy of Shutterstock)

Molecular Biomarkers Pave Way for New Tests to Diagnose and Predict Breast Cancer

Despite playing essential roles in tissue development and immune protection, the contribution of proteoglycans in cancer remains poorly understood. Some proteoglycans appear to shield the body from cancer,... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: T cell immunity could be a marker for early Parkinson’s treatment (Photo courtesy of Shutterstock)

T Cells in Blood Can Detect Parkinson's Years Before Diagnosis

Diagnosing Parkinson’s disease before the appearance of motor symptoms remains one of neurology’s most significant challenges. Patients can go years—even decades—without a diagnosis, as subtle early indicators... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.