We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

02 Jun 2025 - 04 Jun 2025
11 Jun 2025 - 13 Jun 2025

Genomic Assay Predicts Biochemical Failure and Risk of Metastasis in Prostate Cancer Patients After Surgery and Radiation Therapy

By LabMedica International staff writers
Posted on 13 Aug 2014
An advanced genomic test has been used to predict the course of prostate cancer in patients following surgery and radiation treatment.

Investigators at Thomas Jefferson University (Philadelphia, PA, USA) used the commercially available GenomeDx Biosciences (San Diego, CA, USA) Decipher assay system to analyze the genomes from tumor samples from 139 patients who had received radiation therapy following prostate surgery.

Decipher is a genomic test carried out on a small tissue sample that was removed during surgery, which measures the expression levels of 22 RNA biomarkers involved in multiple biological pathways across the genome associated with aggressive prostate cancer. More...
The Decipher test uses the expression of these biomarkers to calculate the probability of clinical metastasis within five years of radical prostatectomy surgery and within three years of successive PSA rise (biochemical recurrence).

Results revealed that Decipher correctly predicted biochemical failure and risk of metastasis after prostate cancer postsurgical irradiation. It was suggested that patients with lower risk as defined by Decipher would benefit from delayed radiation treatment, as opposed to those with higher Decipher scores. However, this needs prospective validation in order to become generally accepted. Nonetheless, genomic-based models may be useful for improved decision-making for treatment of high-risk prostate cancer.

"We are moving away from treating everyone the same," said first author Dr. Robert Den, assistant professor of radiation oncology and cancer biology at Thomas Jefferson University. "Genomic tools are letting us gauge which cancers are more aggressive and should be treated earlier with radiation, and which ones are unlikely to benefit from additional therapy. Our analysis suggests that genomic analysis scores could be used, in concert with other diagnostic measures such as PSA testing, to help determine which patients would benefit from additional radiation therapy and more aggressive measures, and which are less likely to benefit."

The study was published in the July 8, 2014, online edition of the International Journal of Radiation Oncology*Biology*Physics.

Related Links:

Thomas Jefferson University
GenomeDx Biosciences



Gold Member
Troponin T QC
Troponin T Quality Control
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
Biochemistry Analyzer
Chemi+ 8100
New
HAV Rapid Test
OnSite HAV IgG/IgM Rapid Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: New biomarkers could someday make it easy to spot Parkinson’s disease in a patient’s blood sample (Photo courtesy of Shutterstock)

Unique Blood-Based Genetic Signature Can Diagnose Parkinson’s Disease

Parkinson's disease is primarily recognized for its impact on the central nervous system. Recent scientific progress has shifted focus to understanding the involvement of the immune system in the onset... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Custom hardware and software for the real-time detection of immune cell biophysical signatures in NICU (Photo courtesy of Pediatric Research, DOI:10.1038/s41390-025-03952-y)

First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop

Premature infants are highly susceptible to severe and life-threatening conditions, such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis, which is a bloodstream infection occurring in the... Read more

Technology

view channel
Image: Concept of biosensor integrated into hygiene pads enabling direct semi-quantitative analysis of biomarkers in unprocessed menstruation blood (Photo courtesy of Dosnon, L et al. DOI: 10.1002/advs.202505170)

First Ever Technology Recognizes Disease Biomarkers Directly in Menstrual Blood in Sanitary Towels

Over 1.8 billion people menstruate worldwide, yet menstrual blood has been largely overlooked in medical practice. This blood contains hundreds of proteins, many of which correlate with their concentration... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.