We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Next-Generation Whole-Cell Biosensors May Provide New Approach to Diagnostics

By LabMedica International staff writers
Posted on 08 Jun 2015
Print article
Image: Newly designed bacteria with synthetically rewired genetic circuitry act as bactosensors to detect abnormal glucose levels in urine of diabetes patients (Photo courtesy of Chris Bickel and the journal Science).
Image: Newly designed bacteria with synthetically rewired genetic circuitry act as bactosensors to detect abnormal glucose levels in urine of diabetes patients (Photo courtesy of Chris Bickel and the journal Science).
Image: Illustration of principle for using modified, “programmed” bacteria as “bactodetectors” of molecular markers for medical diagnosis (Photo courtesy of J. Bonnet and INSERM).
Image: Illustration of principle for using modified, “programmed” bacteria as “bactodetectors” of molecular markers for medical diagnosis (Photo courtesy of J. Bonnet and INSERM).
Researchers have developed the first programmable bacterial cells for medical diagnosis with improved computing and amplification capacity that could enable earlier clinical detection of various pathological biomarkers in urine or blood.

Several hurdles have limited the application of whole-cell biosensors as analytical clinical tools, primarily their unreliable operation in complex samples and low signal-to-noise ratio. Teams led by Jerome Bonnet (INSERM, CNRS; Montpellier University; Montpellier, France), Franck Molina (SysDiag, CNRS; Montpellier, France), in association with teams led by Eric Renard (Montpellier Regional University Hospital; Montpellier, France) and Drew Endy (Stanford University; Standford, CA, USA), have transformed bacteria into diagnostic agents by inserting the equivalent of a computer program into their DNA. These “bactosensors” with genetically encoded digital amplifying genetic switches can detect clinically relevant molecular markers. They perform signal digitization and amplification, multiplexed signal processing via Boolean logic gates, and data storage.

In vitro diagnostic (IVD) tests are generally noninvasive and simple, but some are complex, requiring sophisticated technologies often available only in central laboratories. Living cells can detect, process, and respond to many signals. Provided with an appropriate “program” they can accomplish diagnostic tasks. To do this, Jerome Bonnet’s team at had the idea to apply concepts from synthetic biology derived from electronics to construct genetic systems to “program” living cells like a computer.

As a central component of modern electronic instruments (including calculators and smartphones), the transistor acts both as a switch and a signal amplifier. In informatics, several transistors are combined to construct “logic gates” that respond to different signal combinations according to a predetermined logic. For example, a dual input “AND” logic gate will produce a signal only if both of two input signals are present. At Standford University Jerome Bonnet had previously invented a genetic transistor named the “transcriptor.” Inserting transcriptors into bacteria can transform them into calculators, where electrical signals used in electronics are replaced by molecular signals that control gene expression. It is thus possible to reprogram the cells by implanting simple genetic “programs” as sensor modules that enable cells to respond to specific combinations of molecules.

The team now applied this new technology to detect disease “signals” in clinical samples. The transcriptor amplification ability was used to detect biomarkers even at very small amounts, and the test results were successfully stored in the bacterial DNA for several months. Thus, the semi-synthetic cells acquired the ability to perform different functions based on the presence of several markers, opening the way to more accurate diagnostic tests that rely on detection of molecular “signatures” using different biomarkers.

As a proof-of-concept clinical experiment, the transcriptor was connected to a bacterial system that responds to glucose and successfully detected the abnormal levels of glucose in urine of diabetic patients.

“We have standardized our method, and confirmed the robustness of our synthetic bacterial systems in clinical samples. We have also developed a rapid technique for connecting the transcriptor to new detection systems. All this should make it easier to reuse our system,” said first author Alexis Courbet, “Our work is presently focused on the engineering of artificial genetic systems that can be modified on demand to detect different molecular disease markers,” said Jerome Bonnet.

The study, by Courbet A, et al., was published May 27, 2015, in the journal Science Translational Medicine.

Related Links:

INSERM 


New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Rickettsia Conorii Assay
RICKETTSIA CONORII ELISA

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.