We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App

One-Minute COVID-19 Test Adaptable For Detecting Other Viruses with Spike-Like Proteins

By LabMedica International staff writers
Posted on 18 Jan 2024
Print article
Image: The one-minute COVID-19 test uses a bioluminescent substrate that reacts with SARS-CoV-2 spike protein (Photo courtesy of Ryo Nishihara)
Image: The one-minute COVID-19 test uses a bioluminescent substrate that reacts with SARS-CoV-2 spike protein (Photo courtesy of Ryo Nishihara)

Several animals ranging from fireflies to lantern fish have the chemical tools needed to produce light. Such a reaction usually requires the substrate luciferin and the enzyme luciferase. However, a class of less discriminating luciferins, termed as imidazopyrazinone-type (IPT) compounds, has the ability to glow upon coming into contact with other proteins, including ones that are not considered to be enzymes. Previous studies have suggested that IPT luciferins could act as the basis for a new type of medical test that utilizes luminescence to indicate the presence of a target protein in a specimen. Now, a team of researchers has developed a glowing test, based on their belief that an IPT luciferin can react with the SARS-CoV-2 spike protein, which allows the virus particles to invade cells and cause COVID-19.

In their research, the team at the National Institute of Advanced Industrial Science and Technology (AIST, Ibaraki, Japan) focused on 36 different IPT luciferins, testing their capacity to react with a singular unit of the SARS-CoV-2 spike protein - the critical element that enables the virus to penetrate cells and cause COVID-19. Remarkably, only one of these molecules, derived from small crustaceans in the Cypridina genus, exhibited the ability to emit light. Further investigations were conducted on the luciferin’s interaction with the spike protein in its trimeric, or natural state. The results were promising, as detectable light emissions were observed within a 10-minute span. However, this light emission wasn't visible to the naked eye and required a commercially available luminescence reader.

The team also demonstrated the selectivity of this IPT luciferin as it did not produce light when exposed to six different proteins commonly found in saliva. This unique type of luminescence, termed “biomolecule-catalyzing chemiluminescence (BCL),” is a reaction initiated by biomolecules that aren't classified as luciferases. Importantly, the researchers found that this luciferin could determine the quantity of the spike protein present in saliva with the same level of accuracy as a method used in vaccine research, but much faster - delivering results in just one minute, a significant improvement over existing rapid point-of-care tests. The researchers envision this BCL-based method could serve as the basis for a straightforward “mix and read” test. It involves adding IPT luciferin to untreated saliva from an individual suspected of having COVID-19. This new approach could potentially be adapted to detect other viruses that have spike-like proteins, such as influenza, MERS-CoV, and different coronaviruses, offering a broad new avenue for virus detection.

Related Links:

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article


Clinical Chemistry

view channel
Image: The new versatile assay has the ability to measure both total and bioavailable cortisol from serum (Photo courtesy of Aarhus University)

Highly Reliable Cell-Based Assay Enables Accurate Diagnosis of Endocrine Diseases

The conventional methods for measuring free cortisol, the body's stress hormone, from blood or saliva are quite demanding and require sample processing. The most common method, therefore, involves collecting... Read more


view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more


view channel
Image: The photoacoustic spectral response sensing instrument is based on low-cost laser diodes (Photo courtesy of Khan et al., doi 10.1117/1.JBO.29.1.017002)

Compact Photoacoustic Sensing Instrument Enhances Biomedical Tissue Diagnosis

The pursuit of precise and efficient diagnostic methods is a top priority in the constantly evolving field of biomedical sciences. A promising development in this area is the photoacoustic (PA) technique.... Read more


view channel
Image: The companies will develop genetic testing systems based on capillary electrophoresis sequencers (Photo courtesy of 123RF)

Sysmex and Hitachi Collaborate on Development of New Genetic Testing Systems

Sysmex Corporation (Kobe, Japan) and Hitachi High-Tech Corporation (Tokyo, Japan) have entered into a collaboration for the development of genetic testing systems using capillary electrophoresis sequencers... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.