We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Novel Biosensor Detects Neurogenerative Disease Proteins

By LabMedica International staff writers
Posted on 17 Jul 2023
Print article
Image: A single sensor combines multiple advanced technologies to diagnose neurodegenerative diseases (Photo courtesy of EPFL)
Image: A single sensor combines multiple advanced technologies to diagnose neurodegenerative diseases (Photo courtesy of EPFL)

The struggle to diagnose neurodegenerative diseases (NDDs), including Alzheimer's and Parkinson's, has primarily been due to the absence of reliable diagnostic tools for the early detection and tracking of disease progression. One main characteristic of neurodegeneration is protein misfolding, recognized as a significant event in the advancement of the disease. The theory is that in the initial stages, normal proteins misfold into oligomers and, in later stages, into fibrils. These misshaped protein aggregates circulate in the brain and body fluids, as well as accumulate as deposits in the brains of those who died from NDDs. However, the development of tools to identify these disease markers or biomarkers has remained unresolved until now due to various barriers, including the limitations of current technology to accurately distinguish and quantify different protein aggregates.

Researchers at EPFL (Lausanne, Switzerland) have now made a significant breakthrough in NDD diagnosis by combining multiple advanced technologies into a single system. This innovative system dubbed the ImmunoSEIRA sensor, employs biosensing technology to detect and identify misfolded protein biomarkers associated with NDDs. In addition, the system leverages the power of artificial intelligence (AI), utilizing neural networks to quantify disease stages and progression. This groundbreaking advancement offers hope for not only early NDD detection and monitoring but also for evaluating treatment options at different disease progression stages.

The researchers created this sophisticated NDD biomarker sensor by combining various scientific fields: protein biochemistry, optofluidics, nanotechnology, and AI. The ImmunoSEIRA sensor uses a technique called surface-enhanced infrared absorption (SEIRA) spectroscopy, allowing scientists to identify and analyze the structure of specific disease-linked molecules or biomarkers tied to NDDs. The sensor features a unique immunoassay to identify and capture these biomarkers with utmost precision. The ImmunoSEIRA sensor utilizes gold nanorod arrays with antibodies for precise protein detection and facilitates real-time specific capture and structural analysis of target biomarkers from minute samples. AI-driven neural networks are employed to identify the presence of specific misfolded protein forms - the oligomeric and fibrillary aggregates, providing an unprecedented level of detection precision as the diseases progress.

The EPFL researchers went on to demonstrate that the ImmunoSEIRA sensor can be applied in real clinical settings, i.e., in biofluids. They successfully identified the unique signature of abnormal fibrils, a key NDD indicator, even in complex fluids such as human cerebrospinal fluid (CSF). This study's results mark a significant leap in the domains of biosensing, infrared spectroscopy, nanophotonics, and NDD biomarkers. The introduction of the AI-assisted ImmunoSEIRA sensor is a positive development for early NDD detection, disease monitoring, and drug efficacy evaluation, fulfilling the urgent need for prompt intervention and treatment of NDDs.

“Since the disease process is tightly associated with changes in protein structure, we believe that structural biomarkers, especially when integrated with other biochemical and neurodegeneration biomarkers, could pave the way for more precise diagnosis and monitoring of disease progression,” said Professor Hilal Lashuel.

Related Links:
EPFL 

New
Gold Member
ANCA IFA
Kallestad Autoimmune ANCA IFA Complete Kit
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Sample Concentrator
Sample Concentrator for 96 Well Plates
New
Plasmodium Parasites Test
Plasmodium Genotyping Real Time PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Pathology

view channel
Image: Steps and methodology of skin biopsy processing for dSTORM (Photo courtesy of Front. Mol. Neurosci. (2024); DOI: 10.3389/fnmol.2024.1431549)

Super-Resolution Imaging Detects Parkinson's 20 Years Before First Motor Symptoms Appear

Parkinson's disease is the second most common neurodegenerative disorder globally, affecting approximately 8.5 million people today. This debilitating condition is characterized by the destruction of ... Read more

Industry

view channel
Image: The Scopio X100 and X100HT full-field digital cell morphology solution (Photo courtesy of Beckman Coulter)

Beckman Coulter and Scopio Labs Add World's First Digital Bone Marrow Imaging and Analysis to Long-Term Partnership

Since 2022, Beckman Coulter (Brea, CA, USA) and Scopio Labs (Tel Aviv, Israel) have been working together to accelerate adoption of the next generation of digital cell morphology. Scopio's X100 and X100HT... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.