We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




New Technique Designs Nucleic Acid Probes to Detect Rapidly Mutating Bacteria and Viruses

By LabMedica International staff writers
Posted on 16 Feb 2023

The COVID-19 pandemic has shown that the microbes responsible for some infections can rapidly mutate into variants which evade detection and treatment. More...

Now, researchers have developed a technique called AutoPLP that designs nucleic acid probes to help quickly, accurately and easily detect new variants of pathogens which can be hard to trace. This could help prevent infections that have the potential to spread quickly due to these dangerous variants.

Several diagnostics like the ones based on the polymerase chain reaction (PCR) detect pathogens by analyzing genetic material. Rolling circle amplification (RCA) works similarly but eliminates the need for complex temperature cycling unlike PCR. Both the approaches need nucleic acid probes with sequences that match those of the target pathogen in specific locations, although RCA utilizes highly specific “padlock probes” (PLPs). When a pathogen mutates, there is also a change in its genetic sequence, forcing researchers to keep redesigning their probes. So, researchers from the Indian Institute of Technology (IIT) Madras (Chennai, India) set out to create a tool that could automatically design these PLPs, as well as systematically take into account all the required technical parameters simultaneously to make the overall process easier and more robust.

The new tool, a computer program termed AutoPLP has been named after the PLPs it designs. The program takes the genome sequences of similar pathogens as input and runs a series of analyses and database searches, outputting a set of customized PLP sequences. Using the program, the researchers designed probes against the rabies virus and Mycobacterium tuberculosis. In the case of the rabies virus, AutoPLP targeted three genes, yielding probes with a higher and narrower range of melting temperatures as compared to those in the literature. In the case of M. tuberculosis, the team designed 13 probes that specifically targeted the two genes responsible for drug-resistant strains with the program. According to the researchers, the new tool could speed up the discovery of new pathogen variants, thus helping fight them rapidly and effectively through the use of precise molecular diagnostics.

Related Links:
IIT Madras


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Serological Pipet Controller
PIPETBOY GENIUS
New
Rapid Test Reader
DIA5000
New
Silver Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.