We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics - An LGC Company

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Personalizing Whole Genome Sequencing Doubles Diagnosis of Rare Diseases

By LabMedica International staff writers
Posted on 08 Nov 2022
Print article
Image: Patients with rare diseases now stand an improved chance of receiving a genetic diagnosis (Photo courtesy of Pexels)
Image: Patients with rare diseases now stand an improved chance of receiving a genetic diagnosis (Photo courtesy of Pexels)

In 2018, the UK’s department of health announced an NHS Genomic Medicine Service, which allows patients with rare diseases to have their entire genetic code read in the hope of providing a much-needed diagnosis. However, the interpretation of this data can be extremely challenging and many people with complex, rare genetic diseases still do not receive a molecular answer to the cause of their problems. Now, a new study has found that tailoring the analysis of whole genome sequencing to individual patients could double the diagnostic rates of rare diseases.

In the study, researchers at University College London (UCL, London, UK) sought to offer patients with rare diseases an improved chance of receiving a genetic diagnosis. To do so, they tested how using a genomic medicine team of specialist doctors, bioinformaticians, and scientists could boost the capabilities of NHS diagnostic laboratories beyond the standard semi-automated analysis of data. The UCL team re-evaluated undiagnosed cases to identify clues that might help direct further, more personalized analysis. They subsequently applied additional bioinformatic approaches, using advanced computer technologies to identify genetic alterations in a patients’ DNA which may be causing disease but had been overlooked during routine testing.

The work included 102 undiagnosed patients, suspected of having a primary mitochondrial disease (a large group of incurable genetic disorders that affect children and adults, associated with a broad spectrum of medical problems, severe disabilities, and reduced lifespan), who had undergone whole genome sequencing via the NHS’s 100,000 Genomes Project. This personalized approach increased the diagnostic rate from 16.7% to 31.4%. It also detected potential disease-causing variants in a further 3.9% of patients. Receiving a genetic diagnosis is important as it allows patients to receive access to family planning, specialized IVF, and drugs trials. It can also permit targeted screening of known disease complications and access to drug studies.

“This work is a significant step forward in developing the best ways to maximize the benefits of genome analysis for patients,” said Professor Michael Hanna, Director of UCL Queen Square Institute of Neurology. “It clearly demonstrates that by combining automated approaches to genome analysis with data interpretation by a skilled multidisciplinary team the diagnostic rates doubles. This is an important finding that will influence how genomic medicine diagnostic services should evolve world-wide.”

“The journey to reaching a diagnosis for children and adults with rare, complex, medical conditions can be a very long process, and genomic medicine provides a transformative and powerful tool in helping reach that goal,” said study co-author, Dr. James Davison (Metabolic Medicine Department at Great Ormond Street Hospital and chair of the British Inherited Metabolic Diseases Group) “This study highlights the importance of the collaboration between specialist clinicians and genetic scientists in interpreting the results of genome sequencing to maximize the opportunity of reaching a diagnosis which can then help guide medical management and treatment options.”

Related Links:
UCL 

Gold Supplier
SARS-CoV-2 Antigen Rapid Test
RapiSafe SARS-CoV-2 Antigen Rapid Test (Professional use)
New
Trypanosoma Brucei Gambiense Antibody Test
HAT Sero K-SeT
New
D-Dimer Test
Epithod 616 D-Dimer Kit
New
Silver Supplier
Monkeypox Virus Real Time PCR Test
Monkeypox Virus Real Time PCR Detection Kit

Print article
SUGENTECH INC.

Channels

Clinical Chem.

view channel
Image: ELISA kit for liver-type fatty acid–binding protein (L-FABP). The level of L-FABP present in urine reflects the level of renal tubular dysfunction (Photo courtesy of Sekisui Medical Co)

Urinary Biomarkers Predict Weaning From Acute Dialysis Therapy

Acute kidney injury is associated with a higher risk of chronic kidney disease (CKD), end-stage renal disease, and long-term adverse cardiovascular effects. Critically ill patients with acute kidney injury... Read more

Microbiology

view channel
Image: Ring-form trophozoites of Plasmodium vivax in a thin blood smear (Photo courtesy of Centers for Disease Control and Prevention)

Immune Regulators Predict Severity of Plasmodium vivax Malaria

Cytokines and chemokines are immune response molecules that display diverse functions, such as inflammation and immune regulation. In Plasmodium vivax infections, the uncontrolled production of these molecules... Read more

Pathology

view channel
Image: Breast cancer spread uncovered by new molecular microscopy (Photo courtesy of Wellcome Sanger Institute)

New Molecular Microscopy Tool Uncovers Breast Cancer Spread

Breast cancer commonly starts when cells start to grow uncontrollably, often due to mutations in the cells. Overtime the tumor becomes a patchwork of cells, called cancer clones, each with different mutations.... Read more

Industry

view channel
Image: With Cell IDx’s acquisition, Leica Biosystems will be moving its multiplexing menu forward (Photo courtesy of Leica Biosystems)

Leica Biosystems Acquires Cell IDx, Expanding Offerings in Multiplexed Tissue Profiling

Leica Biosystems, a technology leader in automated staining and brightfield and fluorescent imaging (Nussloch, Germany), has acquired Cell IDx, Inc. (San Diego, CA, USA), which provides multiplex staining... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.