We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Chromosome Instability Patterns Predict Tumor Drug Response

By LabMedica International staff writers
Posted on 16 Jun 2022

By analyzing the differences in the number of repetitions of sequences of DNA within cancerous tumors, genomic researchers characterized 17 different types of chromosomal instability, which could be used to predict tumor drug response and to aid in the identifying future drug targets. More...

Chromosomal instability (CIN) is a type of genomic instability in which chromosomes are unstable, such that either whole chromosomes or parts of chromosomes are duplicated or deleted. Chromosomal instability is a common feature of cancer, occurring in around 80% of tumors, researchers are only now beginning to understand exactly what types or patterns of instability are present in any given tumor.

To increase this understanding, investigators at the University of Cambridge (United Kingdom) and colleagues at the Spanish National Cancer Research Center (Madrid, Spain) evaluated the extent, diversity, and origin of CIN across 7,880 tumors representing 33 cancer types.

Results of this evaluation revealed 17 different types of chromosomal instability. These chromosomal instability signatures could be used to predict how tumors might respond to drugs, as well as aiding in the identification of future drug targets.

Senior author Dr. Florian Markowetz, senior group leader at the Cancer Research UK Cambridge Institute of the University of Cambridge, said, "The more complex the genetic changes that underlie a cancer, the more difficult they are to interpret and the more challenging it is to treat the tumor. This is tragically clear from the very low survival rates for cancers that arise as a result of chromosomal instability. Our discovery offers hope that we can turn things around, providing much more sophisticated and accurate treatments. We are now working hard to bring our technology to patients and develop it to a level where it can transform patients' lives."

The CIN study was published in the June 15, 2022, online edition of the journal Nature.

Related Links:
University of Cambridge 
Spanish National Cancer Research Center 

 


Gold Member
Hematology Analyzer
Medonic M32B
Gold Member
Hybrid Pipette
SWITCH
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.