Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Paper-Based Sensor Could Pave Way for Bedside Therapeutic Drug Monitoring System

By LabMedica International staff writers
Posted on 27 Apr 2022

Theophylline (THO) is effective in treating respiratory problems and inflammation, although the drug can be toxic if taken above certain limits. More...

This demands accurate and rapid sensing devices that can closely monitor THO levels in patients. Scientists have now designed a paper-based THO sensor with a response time of three seconds. The sensor is not only easy to use but also economical and can reduce the burden of drug analysis in developing countries. Additionally, its prototype can be used to develop a bedside therapeutic drug monitoring system.

The highly selective and sensitive sensor was developed by a team of researchers from Shibaura Institute of Technology (SIT, Tokyo, Japan) who also successfully tested it using whole bovine blood. THO is a natural organic compound whose molecular structure is very similar to that of caffeine present in coffee and cacao. Over the years, due to its therapeutic properties, THO has become one of the most widely studied xanthine group derivates. THO is used to dilate respiratory passages in people having difficulty breathing, and as a muscle relaxant, anti-asthmatic, and diuretic (drugs used to increase urine production and reduce blood pressure). It is also known to have anti-inflammatory and anti-tumor properties, and can regulate our immune responses too.

While THO is beneficial in treating a number of conditions, the drug has a very narrow therapeutic window. This means it can create adverse effects if administered beyond a certain limit (and that limit can be quite easily reached). An accidental or deliberate overdose can be highly toxic and lead to problems such as seizures, rapid heartbeats, excitation of the nervous system, or even death. This makes close monitoring of THO levels during therapy extremely crucial. Therapeutic drug monitoring is essential for optimizing the effects of treatments such as chemotherapy, which require strict control over the drug’s concentration in the patient’s blood to prevent severe side effects. However, most monitoring techniques are often time-consuming and demand complex procedures that can only be carried out by an expert. The same goes for THO detection methods.

To alleviate these problems, researchers over the years have developed low-cost electrochemical methods that are simple, highly sensitive, and rapid. One of these, a class of electrochemical tools that has recently gained momentum, is molecularly imprinted polymers (MIPs). These tools have tailor-made molecular cavities that can recognize and bind to specific target molecules, just like receptors in our own body would. Their ability to do so is being widely used in several applications, including drug detection. In the new study, the SIT scientists developed a disposable, paper-based THO sensor consisting of an electrode made of molecularly imprinted graphite. Since MIPs are designed using the target molecule as a template, the team used THO as a template when developing the sensor’s carbon-based electrode paste. The synthesized paste was then loaded onto a printed sensor chip and its THO detection abilities were tested.

The sensor was found to be highly sensitive (meaning it could detect even small amounts of THO and showed great selectivity towards the drug. In fact, the sensor could identify THO even in samples with THO concentrations as low as 2.5 µg/mL (µg=microgram, i.e., 1/1000 of a milligram). And what’s more, this sensor needs only 3 seconds to detect THO! It could do so even in whole bovine blood. This portable, low-cost, reliable, and rapid sensor has long-term stability and can be used for the real-time detection of drugs like THO without us depending on sophisticated equipment. Furthermore, the fabrication strategy provided in this study can be used to develop efficient electrochemical sensors for various other clinical interventions.

“Existing methods for the analysis of the drugs in blood are expensive and need specialized equipment. This can be a problem for developing countries dealing with a lack of resources and technicians,” said Assistant Prof. Aaryashree. “The paper-based sensor that we have developed is not only easy to use but also economical and can reduce the burden of drug analysis in developing countries. Further, its prototype can be used to develop a bedside therapeutic drug monitoring system, which will alert us of any overdose, avoiding side effects in patients taking these drugs.”

Related Links:
Shibaura Institute of Technology 


Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
Collection and Transport System
PurSafe Plus®
Silver Member
PCR Plates
Diamond Shell PCR Plates
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Researchers have developed two rapid blood tests for early Alzheimer’s detection (Photo courtesy of UConn)

Fast Low-Cost Alzheimer’s Tests Could Detect Disease in Early and Silent Stages

Early diagnosis remains one of the greatest challenges in combating Alzheimer’s disease, the most common cause of age-related dementia. With symptoms like memory loss and confusion typically appearing... Read more

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more

Microbiology

view channel
Image: EBP and EBP plus have received FDA 510(k) clearance and CE-IVDR Certification for use on the BD COR system (Photo courtesy of BD)

High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample

Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.