We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics - An LGC Company

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Paper-Based Sensor Could Pave Way for Bedside Therapeutic Drug Monitoring System

By LabMedica International staff writers
Posted on 27 Apr 2022
Print article
Image: Rapid and disposable Theophylline sensor (Photo courtesy of SIT)
Image: Rapid and disposable Theophylline sensor (Photo courtesy of SIT)

Theophylline (THO) is effective in treating respiratory problems and inflammation, although the drug can be toxic if taken above certain limits. This demands accurate and rapid sensing devices that can closely monitor THO levels in patients. Scientists have now designed a paper-based THO sensor with a response time of three seconds. The sensor is not only easy to use but also economical and can reduce the burden of drug analysis in developing countries. Additionally, its prototype can be used to develop a bedside therapeutic drug monitoring system.

The highly selective and sensitive sensor was developed by a team of researchers from Shibaura Institute of Technology (SIT, Tokyo, Japan) who also successfully tested it using whole bovine blood. THO is a natural organic compound whose molecular structure is very similar to that of caffeine present in coffee and cacao. Over the years, due to its therapeutic properties, THO has become one of the most widely studied xanthine group derivates. THO is used to dilate respiratory passages in people having difficulty breathing, and as a muscle relaxant, anti-asthmatic, and diuretic (drugs used to increase urine production and reduce blood pressure). It is also known to have anti-inflammatory and anti-tumor properties, and can regulate our immune responses too.

While THO is beneficial in treating a number of conditions, the drug has a very narrow therapeutic window. This means it can create adverse effects if administered beyond a certain limit (and that limit can be quite easily reached). An accidental or deliberate overdose can be highly toxic and lead to problems such as seizures, rapid heartbeats, excitation of the nervous system, or even death. This makes close monitoring of THO levels during therapy extremely crucial. Therapeutic drug monitoring is essential for optimizing the effects of treatments such as chemotherapy, which require strict control over the drug’s concentration in the patient’s blood to prevent severe side effects. However, most monitoring techniques are often time-consuming and demand complex procedures that can only be carried out by an expert. The same goes for THO detection methods.

To alleviate these problems, researchers over the years have developed low-cost electrochemical methods that are simple, highly sensitive, and rapid. One of these, a class of electrochemical tools that has recently gained momentum, is molecularly imprinted polymers (MIPs). These tools have tailor-made molecular cavities that can recognize and bind to specific target molecules, just like receptors in our own body would. Their ability to do so is being widely used in several applications, including drug detection. In the new study, the SIT scientists developed a disposable, paper-based THO sensor consisting of an electrode made of molecularly imprinted graphite. Since MIPs are designed using the target molecule as a template, the team used THO as a template when developing the sensor’s carbon-based electrode paste. The synthesized paste was then loaded onto a printed sensor chip and its THO detection abilities were tested.

The sensor was found to be highly sensitive (meaning it could detect even small amounts of THO and showed great selectivity towards the drug. In fact, the sensor could identify THO even in samples with THO concentrations as low as 2.5 µg/mL (µg=microgram, i.e., 1/1000 of a milligram). And what’s more, this sensor needs only 3 seconds to detect THO! It could do so even in whole bovine blood. This portable, low-cost, reliable, and rapid sensor has long-term stability and can be used for the real-time detection of drugs like THO without us depending on sophisticated equipment. Furthermore, the fabrication strategy provided in this study can be used to develop efficient electrochemical sensors for various other clinical interventions.

“Existing methods for the analysis of the drugs in blood are expensive and need specialized equipment. This can be a problem for developing countries dealing with a lack of resources and technicians,” said Assistant Prof. Aaryashree. “The paper-based sensor that we have developed is not only easy to use but also economical and can reduce the burden of drug analysis in developing countries. Further, its prototype can be used to develop a bedside therapeutic drug monitoring system, which will alert us of any overdose, avoiding side effects in patients taking these drugs.”

Related Links:
Shibaura Institute of Technology 

Gold Supplier
SARS-CoV-2 (ORF1a, N, RdRp) Real-Time RT-PCR Test
DiaPlexQ SARS-CoV-2 (ORF1a, N, RdRp)
New
Gold Supplier
Automatic Biochemistry Analyzer
Biossays C8
New
Platinum Supplier
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing
New
Washer Dispenser
EL406

Print article

Channels

Clinical Chem.

view channel
Image: The analysis pipeline used to investigate associations between blood metabolites, later life brain imaging measures, and genetic risk for Alzheimer’s disease (Photo courtesy of University College London)

Lipid Measurements Show Potential as Alzheimer’s Disease Biomarkers

Brain changes accompanying ageing are varied and can include pathologies that lead to cognitive impairment, the commonest of which is Alzheimer’s disease (AD). Identifying blood-based signatures of brain... Read more

Molecular Diagnostics

view channel
Image: This image depicts a DNA molecule that is methylated on both strands on the center cytosine. DNA methylation plays an important role for epigenetic gene regulation in development and cancer (Photo courtesy of Wikimedia Commons)

Study Supports Use of Methylated DNA Biomarkers for Cancer Diagnosis and Prognosis

A recent study added weight to the theory that methylated DNA biomarkers could be used for cancer diagnosis and prognosis. Methylation is a biological process by which methyl groups are added to a DNA molecule.... Read more

Hematology

view channel
Image: Standard test for multiple myeloma provides clues of a rare, more deadly type (Photo courtesy of Pexels)

Standard Blood Cancer Test Provides Clues of Rare IgD Multiple Myeloma

IgD myeloma accounts for about 1% of common blood cancer multiple myeloma and has a worse prognosis. Specific testing for IgD myeloma is available at a handful of reference labs across the US, but takes... Read more

Industry

view channel
Image: QIAGEN has acquired a majority stake in enzymes provider BLIRT S.A. (Photo courtesy of QIAGEN)

Qiagen Acquires Enzymes Provider Blirt to Strengthen Sample Technologies Business

QIAGEN N.V. (Venlo, Netherlands) has signed agreements to acquire a 96% majority ownership stake in BLIRT S.A. (Gdansk, Poland), a manufacturer of recombinant enzymes for the life science industry.... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.