We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Epigenetic Biomarkers Increase Sensitivity of Prostate Cancer Liquid Biopsy Diagnostic Tests

By LabMedica International staff writers
Posted on 31 Jan 2022
A team of Austrian researchers identified additional epigenetic biomarkers that will upgrade the diagnosis of advanced prostate cancer by increasing the sensitivity of liquid biopsy analysis of circulating tumor DNA.

Liquid biopsy analysis of circulating cell-free DNA (cfDNA) from peripheral blood has emerged as a valuable diagnostic tool in oncology, since sample collection is quick and minimally invasive. More...
In cancer patients, cfDNA consists in part of cancer-derived circulating tumor DNA (ctDNA), and it has been shown that tumor-related genetic and epigenetic alterations can be detected by analyzing cfDNA in cancer patients. Epigenetic tumor-specific changes including DNA methylation are measurable in ctDNA, and their potential as diagnostic, prognostic, and predictive epigenetic biomarkers has been demonstrated in a large number of studies.

For the current study, investigators at the Medical University of Vienna (Austria) evaluated the suitability of DNA methylation-based biomarkers for non-invasive prostate cancer (PCa) diagnostics.

Based on experiments and in silico analyses they identified two DNA methylation signatures of three genes each, which could be used as minimal-invasive markers in liquid biopsies for the detection of methylated ctDNA. These signatures allowed for the classification of mCRPC (metastatic castration resistant PCa) with high specificity and sensitivity and were able to distinguish responders from non-responders following different treatment procedures.

In addition, DNA methylation of three genes, aldose reductase (AKR1B1), Krueppel-like factor 8 (KLF8), and lipid droplet associated hydrolase (LDAH) was used to monitor the therapeutic response of patients to chemotherapy and anti-androgen therapy. Increased DNA methylation of marker genes was also associated with a poorer prognosis and shorter patient survival.

The investigators said that as a next step, it will be important to test the performance of their methylation markers in prospective clinical trials including mCRPC patients undergoing different treatment regimes.

The study was published in the January 4, 2022, online edition of the journal Molecular Cancer.

Related Links:
Medical University of Vienna


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.