We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Rapid One-Step Assay for Field-Based Detection of Asymptomatic Malaria

By LabMedica International staff writers
Posted on 29 Sep 2020
A novel CRISPR-based ultrasensitive assay system was able to detect the four major types of malaria-causing parasites and has been streamlined for use in locations lacking the advanced laboratory equipment and highly trained technicians required for tests such as RT-qPCR, which is used extensively for monitoring the COVID-19 pandemic.

Asymptomatic carriers of malaria caused by parasites of the Plasmodium species (P. More...
falciparum, P. vivax, P. ovale, and P. malariae) hamper malaria control and eradication. Achieving malaria eradication requires ultrasensitive diagnostics for low parasite density infections (fewer than 100 parasites per microliter blood) that can be used in resource-limited settings (RLS). Molecular methods, such as PCR, have high sensitivity and specificity, but remain high-complexity technologies impractical for RLS.

Investigators at Harvard University (Cambridge, MA, USA) and their collaborators at the Massachusetts Institute of Technology (Cambridge, MA, USA) and the Wyss Institute for Biologically Inspired Engineering (Cambridge, MA) reported the development of a CRISPR-based diagnostic tool for ultrasensitive detection and differentiation of the four Plasmodium parasites, using the nucleic acid detection platform SHERLOCK (specific high-sensitivity enzymatic reporter unlocking).

The investigators modified the SHERLOCK protocol to incorporate the CRISPR-Cas12a enzyme, which they programmed to become activated by a guide RNA that bound to a specific target nucleic acid target sequence, in this case a sequence from one of the four Plasmodium species. Activated Cas12a then non-specifically cleaved any single-stranded DNA strand in its vicinity with an extremely high turn-over rate of about 1,250 collateral cleavage reactions per second.

The complete assay platform was expanded to comprise a 10-minute SHERLOCK parasite rapid extraction protocol, followed by the SHERLOCK diagnostic protocol for 60 minutes, which enabled Plasmodium species-specific detection via fluorescent or lateral flow strip readout. The assay was compatible with different sample types, such as whole blood, plasma, serum, and dried blood; and all components required for amplification, Cas12a activation, and signal generation were lyophilized in a single test tube that functioned as a "one-pot-reaction" following reconstitution of the reagents when mixed with a patient sample.

Performance of the simplified field-ready SHERLOCK diagnostic was evaluated using simulated whole blood, serum, and dried blood spot (DBS) samples, as well as clinical samples from patients with P. falciparum and P. vivax infections. Results revealed that the assay was capable of detecting fewer than two parasites per microliter blood, a limit of detection suggested by the World Health Organization (WHO). The P. falciparum and P. vivax assays exhibited 100% sensitivity and specificity on clinical samples (five P. falciparum and 10 P. vivax samples).

"This field-ready SHERLOCK diagnostic malaria assay surpasses the sensitivity and specificity requirements set by the WHO for a desired test that can be used to detect low parasite density in asymptomatic carriers of all major Plasmodium species," said senior author Dr. James Collins, professor of medical engineering and science at the Massachusetts Institute of Technology. "Its highly streamlined design could provide a viable solution to the present diagnostic bottleneck on the path to eliminate malaria, and more generally enabling malaria surveillance in low-resource settings."

The rapid SHERLOCK assay for malaria parasites was described in the September 21, 2020, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America.

Related Links:
Harvard University
Massachusetts Institute of Technology
Wyss Institute for Biologically Inspired Engineering



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Automated MALDI-TOF MS System
EXS 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.