We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

TB Sequencing Could Replace Drug Susceptibility Testing

By LabMedica International staff writers
Posted on 08 Oct 2018
Print article
Image: The BD BACTEC MGIT automated mycobacterial detection system is a fully automated solution for mycobacterial liquid culture and susceptibility testing (Photo courtesy of Becton Dickinson).
Image: The BD BACTEC MGIT automated mycobacterial detection system is a fully automated solution for mycobacterial liquid culture and susceptibility testing (Photo courtesy of Becton Dickinson).
Tuberculosis (TB) is the most deadly infectious disease worldwide, causing 1.6 million deaths in 2017. Drug resistance is a particularly challenging and growing problem: as in 2017, it was estimated that 558,000 new cases of TB were resistant to rifampicin, the most effective first-line drug, and globally, just over half of patients with multi-drug resistant TB are successfully treated.

An advantage of using sequencing is that both susceptibility and resistance testing can be done in one assay. Currently, drug susceptibility testing is performed using culture-based methods, which can be time consuming. Although rapid polymerase chain reaction (PCR)-based drug resistance tests have been developed, but are not the same as if a resistance mutation is not identified, drug susceptibility cannot be inferred.

A large consortium of scientists working with those at the Nuffield Department of Medicine (Oxford University, UK) obtained whole-genome sequences and associated phenotypes of resistance or susceptibility to the first-line anti-tuberculosis drugs isoniazid, rifampin, ethambutol, and pyrazinamide for isolates from 16 countries across six continents. For each isolate, mutations associated with drug resistance and drug susceptibility were identified across nine genes, and individual phenotypes were predicted unless mutations of unknown association were also present.

Isolates were sequenced on Illumina platforms. Phenotypic drug-susceptibility testing was performed locally with the use of an MGIT 960 system, by culture on suitable medium or by microscopic-observation drug-susceptibility (MODS) assay, with method-specific critical concentrations.

The scientists analyzed a total of 10,209 isolates. The largest proportion of phenotypes was predicted for rifampin 9,660/10,130 (95.4%) and the smallest was predicted for ethambutol 8,794/9,794 (89.8%). Resistance to isoniazid, rifampin, ethambutol, and pyrazinamide was correctly predicted with 97.1%, 97.5%, 94.6%, and 91.3% sensitivity, respectively, and susceptibility to these drugs was correctly predicted with 99.0%, 98.8%, 93.6%, and 96.8% specificity. Of the 7,516 isolates with complete phenotypic drug-susceptibility profiles, 5,865 (78.0%) had complete genotypic predictions, among which 5,250 profiles (89.5%) were correctly predicted. Among the 4,037 phenotypic profiles that were predicted to be pansusceptible, 3,952 (97.9%) were correctly predicted.

Timothy Walker, MD, D Phil, a clinical lecturer and co-author of the study, said, “Molecular tests to predict drug susceptibility are potentially a paradigm shift. The data has already had an impact and I imagine other public health agencies will follow suit as well. With a portable platform, the goal of delivering individualized therapy to the bedside anywhere in the world becomes more realistic. It's no longer a pipe dream.” The study was published on September 26, 2018, in the journal The New England Journal of Medicine.

Related Links:
Nuffield Department of Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The cobas Malaria test is the first FDA-approved molecular test to screen U.S. blood donors for malaria (Photo courtesy of Roche)

First FDA-Approved Molecular Test to Screen Blood Donors for Malaria Could Improve Patient Safety

Malaria, a serious illness that often leads to death, is spread by a specific mosquito species that infect humans with a parasite. Other transmission modes include blood transfusions, organ transplants,... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The medical office procedure detects the key biomarker in Parkinson’s and related neurodegenerative diseases (Photo courtesy of BIDMC)

Simple Skin Biopsy Test Detects Parkinson’s and Related Neurodegenerative Diseases

Parkinson's disease and a group of related neurodegenerative disorders known as synucleinopathies impact millions globally. These conditions, including Parkinson’s disease (PD), dementia with Lewy bodies... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.