We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




MicroRNA Pair Serves as Biomarkers for Rapid Sepsis Diagnosis

By LabMedica International staff writers
Posted on 16 Jul 2018
Print article
Image: The structure of a lipopolysaccharide (Photo courtesy of Wikimedia Commons).
Image: The structure of a lipopolysaccharide (Photo courtesy of Wikimedia Commons).
Two microRNAs that could be the basis of a test to help physicians classify patients into those with organ failure who are at high risk of sepsis and death and those patients with milder infections have been identified.

MicroRNAs (miRNAs) and short interfering RNAs (siRNA) comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. MiRNAs resemble siRNAs of the RNA interference (RNAi) pathway, except miRNAs derive from regions of RNA transcripts that fold back on themselves to form short hairpins, whereas siRNAs derive from longer regions of double-stranded RNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation.

Sepsis is a dysregulated systemic immune response to disseminated infection that has a high mortality rate. In some patients, sepsis results in a period of immunosuppression (known as immunoparalysis) characterized by reduced inflammatory cytokine output, increased secondary infection, and an increased risk of organ failure and mortality.

Prolonged exposure to microbial products such as lipopolysaccharide can induce a form of innate immune memory, known as lipopolysaccharide tolerance, which blunts subsequent responses to unrelated pathogens. Lipopolysaccharide tolerance recapitulates several key features of sepsis-associated immunosuppression and can be used as a model for studying this phenomenon.

In this regard, investigators at the Columbia University Irving Medical Center (New York, NY, USA) performed a screen for tolerance-associated microRNAs and identified miR-221 and miR-222 as regulators of the functional reprogramming of macrophages during the formation of lipopolysaccharide tolerance. Prolonged stimulation with lipopolysaccharide in mice led to increased expression of miR-221 and miR-222.

While clinical trials will be needed to validate the usefulness of testing patients for these microRNAs as a quick guide to prognosis and treatment, a small study revealed that among 30 hospitalized patients, those with evidence of organ failure exhibited higher levels of miR-221 and miR-222 in their blood samples. In septic patients, those with elevated miR-221 and miR-222 also exhibited evidence of immunosuppression.

“The best treatment for sepsis starts with rapid detection. Our results suggest that specific molecules called microRNAs may be potential biomarkers of poor prognosis, indicating the need for more aggressive treatment options,” said senior author Dr.Sankar Ghosh, professor of microbiology and immunology at Columbia University Irving Medical Center.

Related Links:
Columbia University Irving Medical Center

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.