We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Tool Predicts Deadly Form of Mycosis Fungoides

By LabMedica International staff writers
Posted on 21 May 2018
Print article
Image: A histopathology of classic Mycosis fungoides. This skin biopsy specimen demonstrates an atypical lymphocytic infiltrate going up into the epidermis (epidermotropism) in the absence of epidermal edema (spongiosis). The collection of atypical lymphocytes surrounding a Langerhans cell is a Pautrier microabcess, the hallmark of classic MF (Photo courtesy of the University of Pennsylvania).
Image: A histopathology of classic Mycosis fungoides. This skin biopsy specimen demonstrates an atypical lymphocytic infiltrate going up into the epidermis (epidermotropism) in the absence of epidermal edema (spongiosis). The collection of atypical lymphocytes surrounding a Langerhans cell is a Pautrier microabcess, the hallmark of classic MF (Photo courtesy of the University of Pennsylvania).
Mycosis fungoides (MF), the most common cutaneous T cell lymphoma (CTCL) is a malignancy of skin-tropic memory T cells. Most MF cases present as early stage (stage I A/B, limited to the skin), and these patients typically have a chronic, indolent clinical course.

However, a small subset of early-stage cases develops progressive and fatal disease and because outcomes can be so different, early identification of this high-risk population is an urgent unmet clinical need. If identified early, patients with this aggressive form of MF may be eligible for a stem cell transplant to cure the disease, but once MF progresses and becomes treatment-resistant, it is nearly impossible to achieve the complete remission required for a successful stem cell transplant.

Scientists from the Brigham and Women’s Hospital (Boston, MA, USA) and their colleagues evaluated the use of next-generation high-throughput DNA sequencing of the T cell receptor β gene (TCRB) in lesional skin biopsies to predict progression and survival in a discovery cohort of 208 patients with CTCL (177 with MF) from a 15-year longitudinal observational clinical study. They compared these data to the results in an independent validation cohort of 101 CTCL patients (87 with MF).

The team used high-throughput DNA sequencing, a technique that allowed them to sequence massive amounts of DNA at once, producing a snapshot of the TCRB genes from a large number of cells at the site of the lesion. The team could use this to measure “tumor clone frequency (TCF)” – the percentage of T cells that are clones of the mutated MF lymphoma T cells. An elevated TCF predicted the likelihood of progression and overall survival of patients with MF with high sensitivity and specificity.

The team found that in early-stage patients, a TCF of more than 25% in the skin was a stronger predictor of progression than any other established prognostic factor (stage IB versus IA, presence of plaques, high blood lactate dehydrogenase concentration, large-cell transformation, or age). The TCF therefore may accurately predict disease progression in early-stage MF.

Thomas S. Kupper, MD, a professor of Dermatology and senior author of the study, said, “Under the microscope, benign T cell and MF T cells are hard to distinguish. However, every T cell has a unique DNA sequence of its T cell receptor, which we can detect by high-throughput DNA sequencing. High throughput DNA sequencing and calculations of TCF allow us to make predictions that would never before have been possible. As a physician who has treated patients with this disease for decades, I am excited to be involved with work that so directly and profoundly affects the care and management of these patients.” The study was published on May 9, 2018, in the journal Science Translational Medicine.

Related Links:
Brigham and Women’s Hospital

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.