We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Assay Identifies Patients Benefiting from Cancer Immunotherapies

By LabMedica International staff writers
Posted on 14 Nov 2017
Print article
Image: An immunohistochemistry of PharmDX 22c3 staining of non-small-cell lung carcinoma (Photo courtesy of Agilent).
Image: An immunohistochemistry of PharmDX 22c3 staining of non-small-cell lung carcinoma (Photo courtesy of Agilent).
Programmed cell death ligand 1 (PD-L1) has been detected in up to 50% of all human cancers, and has become a major focus of therapeutic and biomarker studies.

Patients with cancers expressing the PD-L1 protein are more likely to respond to certain immuno-oncology therapeutics, and several PD-L1-related immuno-oncology therapies have received official approval. A test that delivered PD-L1 results from plasma read out as continuous variables may be of increased utility in the selection of therapeutic options.

A team of scientists collaborating with those at Pinehurst Medical Clinic-East (Pinehurst, NC, USA) focused this test development on mechanisms of blood-based testing for sensitive measurement of circulating RNA using droplet digital polymerase chain reaction (ddPCR). Specifically, they optimized methods for the detection of PD-L1 transcripts recovered from platelet-enriched plasma. Specimens for feasibility and development included tumor derived cell lines, activated and resting immune cells, 38 normal donor plasma and 79 non-small-cell lung carcinoma (NSCLC) donor plasma. They collected a total of 43 tissue and blood samples to assess the potential for concordance with tissue testing,

The team used an assay developed by Biodesix, Inc (Boulder, CO, USA) with the ddPCR and found that of the 79 NSCLC donor specimens initially evaluated with the RNA blood test, they observed a frequency of 62% positive samples with highly variable levels of plasma PD-L1 (2 - 774 copies). They then evaluated a subset of a sample cohort with the PharmDX 22c3 immunohistochemistry (IHC) tissue test result. Although there was poor concordance with a 50% positive IHC cut-off, when they used a variable threshold based on a logistic regression score for the blood assay and the 1% cut-off, concordance of up to 80% was observed between the two assays.

The authors concluded that they have developed sensitive and specific methods that measure the dynamic range of PD-L1 in circulation. This assay is capable of measuring PD-L1 in circulation that arises from activated immune cells and/or tumor cells. They have identified a preliminary threshold for the PD-L1 circulating blood test in development that shows concordance with tissue IHC when using the 22c3 clone at 1% cut-off.

Michael Pritchett, DO, MPH, the lead author of the study, said, “Measurement of PD-L1 is challenging not only when tissue is lacking, but due to the inherent complexity of immunohistochemistry. The testing approach demonstrated in this study shows promise as a method of assessing PD-L1 in plasma. A more objective measure of PD-L1 status could offer a path to better patient care decisions in the treatment of non-small cell lung cancer.” The study was presented on October 28, 2017, at the AACR-NCI-EORTC conference held in Philadelphia, PA, USA.

Related Links:
Pinehurst Medical Clinic-East
Biodesix

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.